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Abstract. The problem of automatic age estimation from facial images poses
a great number of challenges: uncontrollable environment, insufficient and in-
complete training data, strong person-specificity, and high within-range variance,
among others. These difficulties have made researchers of the field propose com-
plex and strongly hand-crafted descriptors, which make it difficult to replicate
and compare the validity of posterior classification and regression schemes. We
present a practical evaluation of four machine learning regression techniques
from some of the most representative families in age estimation: kernel tech-
niques, ensemble learning, neural networks, and projection algorithms. Addi-
tionally, we propose the use of simple HOG descriptors for robust age estimation,
which achieve comparable performance to the state-of-the-art, without requiring
piecewise facial alignment through tens of landmarks, nor fine-tuned and specific
modeling of facial aging, nor additional demographic annotations such as gender
or ethnicity. By using HOG descriptors, we discuss the benefits and drawbacks
among the four learning algorithms. The accuracy and generalization of each re-
gression technique is evaluated through cross-validation and cross-database vali-
dation over two large databases, MORPH and FRGC.

Keywords: Age estimation, Support Vector Regression, SVM, Random Forest,
Multilayer Neural Networks, Regularized Canonical Correlation Analysis, CCA,
HOG

1 Introduction

Automatically conducting human age estimation from facial images can be valuable
for a number of applications, including advanced video surveillance and biometrics [3,
8]; demographic statistics collection; business intelligence and customer profiling for
targeted advertisements; and search optimization in large databases, to list some. Un-
fortunately, this problem has historically been one of the most challenging within the
field of facial analysis. Some of the reasons are the uncontrollable nature of the aging
process, the strong specificity to the personal traits of each individual [19], high vari-
ance of observations within the same age range, and the fact that it is very troublesome
to gather complete and sufficient data to train accurate models [4].
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The process of collecting quality age-annotated samples is difficult, and has often
resulted in very limited and strongly skewed databases. This is especially disadvanta-
geous for applications like video surveillance and forensics, which need to work cor-
rectly when facing unknown subjects and a lack of any additional cues. In these cases,
the availability of large databases like MORPH [16] and FRGC [15] offers a great op-
portunity to make advances in the field. Keeping in mind that any training data set
which is representative of the whole population cannot exist, the only viable option is
to develop methods that are able to exploit large databases in order to gain substan-
tial generalization capabilities. With these premises, this study includes the following
contributions:

– A comparative evaluation of four of the most prominent machine learning regres-
sion techniques that have been typically applied to the problem of age estimation:
Support Vector Regression (SVR), Multilayer Neural Networks (MNN), Random
Forests (RF), and Canonical Correlation Analysis (CCA).

– The first attempt to use Histograms of Oriented Gradients [2] as a visual descriptor
for age estimation. In our study, and compared to usual features, HOG benefits from
being much faster to compute, standard, and easily replicable, besides offering very
similar performance to the state-of-the-art.

– A baseline proposal for incorporating cross-database validation methodologies in
order to test the generalization of an approach. To this end, we also propose the use
of the large FRGC database, which has not received much attention in the past for
age estimation purposes.

The paper is structured as follows: the next section reports and comments on previ-
ous works on age estimation. The proposed approach and methodology is described in
Section 3. Section 4 analyzes current available age databases, describes the extensive
experimentation carried out, and analyzes the obtained results. Finally, Section 5 draws
some conclusions and gives hints for further research.

2 Related work

The first works and databases on automatic age estimation from digital images started
appearing in the early 2000s [9–11]. Nonetheless, research in the field has experienced
a renewed interest from 2006 on, since the availability of large databases like MORPH-
Album 2 [16], which increased by 55× the amount of real age-annotated data with
respect to traditional age databases. Next, we summarize the most successful descriptors
and techniques that have been recently evaluated with this database.

Existing works on age estimation can be categorized by their choice of feature and
classification scheme. Regarding visual features, shape and appearance models such as
ASM (Active Shape Model) and AAM (Active Appearance Model) have been some
of the primary cues used to model aging patterns [1, 4, 5, 9]. Such statistical models
capture the main modes of variation in shape and intensity observed in a set of faces,
and allow face signatures based on such characterizations to be encoded.

Bio-Inspired Features (BIF) [17] and its derivations have been consistently used for
age estimation in the last years [4, 8]. These feed-forward models consist of a number
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of layers intertwining convolutionally and pooling processes. First, an input image is
mapped to a higher-dimensional space by convoluting it with a bank of multi-scale and
multi-orientation Gabor filters. Later, a pooling step downscales the results with a non-
linear reduction, typically a MAX or STD operation, progressively encoding the results
into a vector signature. In [13], the authors carefully design a two-layer simplification of
this model for age estimation by manually setting the number of bands and orientations
for convolution and pooling. Such features are also used in their posterior works [6, 7].

With regards to the learning algorithm, Support Vector Machines (SVM) have com-
monly been used for age classification and regression, as in [13]. A binary decision tree
with SVMs at each node is proposed in [8]. Age ranges are coarsely assigned, and later
are more precisely estimated by Support Vector Regressors (SVR) at the leaves. In [1],
a particular ranking formulation of support vectors, OHRank, is used. The approach
uses cost-sensitive aggregation to estimate ordinal hyperplanes (OH) and ranks them
according to the relative order of ages. In this paper AAM features are used. In [19], the
author employs a similar ranking technique called MFOR.

There have been previous proposals training neural networks, which are able to
learn complex mappings and deal with outliers, for age estimation. In [9], AAM-encoded
face parameters are used as an input for the supervised training of a neural network with
a hidden layer. In this case, models were trained uniquely from 200 color images, and
the number of AAM-model parameters was restricted to 22. More recently, the authors
of [4] tackle age estimation as a discrete classification problem using 70 classes, one for
each age. The best algorithm proposed in this work (CPNN - Conditional Probability
Neural Network) consists of a three-layered neural network, in which the input to the
network includes both BIF features x and a numerical value for age y, and the output
neuron is a single value of the conditional probability density function p(y|x).

Although ensemble learning methods have not been extensively used in the field,
they are particularly suitable for environments with high-dimensional features and strongly
skewed data. An approach based on Random Forests (RF) over anthropometric mea-
surements is presented in [12]. A collection of 11K simple features such as distances
and area ratios are extracted from the facial mesh derived from 68 fine-annotated fidu-
cial markers, and directly fed to the forest. The approach is tested using the subset of
710 face images from FG-NET that are between 0 and 20 years old.

Partial Least Squares (PLS) and Canonical Correlation Analysis (CCA), along with
their regularized and kernelized versions, are increasingly being used in the field of
age estimation [6, 7]. These subspace learning algorithms were originally conceived to
model the compatibility between two multidimensional variables. PLS uses latent vari-
ables to learn a new space in which such variables have maximum correlation, whereas
CCA finds basis vectors such that the projections of the two variables using these vec-
tors are maximally correlated to each other. Both techniques have been adapted for
label regression. To the best of our knowledge, the best current result over MORPH is
achieved by combining BIF features with kernel CCA [7], although in that case the size
of training folds is limited to 10K samples due to computational limitations.

Our experiments demonstrate that a single-scale HOG descriptor is sufficiently ex-
pressive to compare with the performance of complex, fine-tuned features such as BIF;
and that alignment through 5 fiducial points results in comparable age estimation per-
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Fig. 1. The proposed study evaluates four machine learning regression techniques, all of them fed
with histograms of gradients extracted from 50×50 pixel aligned images. A schematic example
is shown here for the case of neural networks.

formance to precise alignment achieved through ASM/AAM fitting, which use approx-
imately 70 landmarks. Additionally, our results show that the common strategy of par-
titioning age into ranges is unnecessary, since a single output neuron is able to act as
an effective regressor. Posing age estimation purely as a regression problem not only
simplifies the formulation, but additionally provides more accurate results when using
a proper descriptor.

3 Methodology

In order to compare the performance of machine learning regression techniques in the
field of age estimation, we have chosen a representative algorithm from each of four
families that are conventionally used: a Support Vector Regressor from the kernel fam-
ily, a Multilayer Neural Network from the neural network family, a Random Forest from
the ensemble learning family, and a regularized Canonical Correlation Analysis from
the projection family. These techniques are described next.

Preprocessing. In general, existing works tackle the problem of age estimation with
visual features that are either complex and fine-tuned (e.g., BIF), or require precise sta-
tistical models involving tens of facial landmarks for accurate alignment (e.g., ASM or
AAM models). As opposed to this, the four chosen learning algorithms will be evaluated
with single-scale HOG visual descriptors after a 5-landmark alignment, see Figure 1.
Histograms of Oriented Gradients (HOG) [2] have been largely used as robust visual
descriptors in many computer vision applications related to object detection and recog-
nition, due to their expressiveness, fast computation, compactness, and invariance to
misalignment and monotonic illumination changes.

The facial region of each image has been extracted with the face detector described
in [14]. Unlike previous approaches, we do not rely on precisely aligned appearance
models. The relative alignment invariance of HOG allows us to require only five land-
marks. The fiducial markers corresponding to the eye centers, nose tip and mouth cor-
ners have been obtained using the convolutional neural network for face alignment pre-
sented in [18]. The aligned version of each detected face is obtained by a non-reflective
similarity image transformation that yields an optimal least-square correspondence be-
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tween the set of fiducial points and the target locations, in which eye centers and mouth
corners are symmetrically placed at 25% and 75% of the alignment template. Unlike
previous approaches like [7], which use input images of 60×60 pixels, our aligned im-
age are resized to only 50×50 pixels.

Support Vector Regression. Given a training set with L data examples X ∈ Rm and
their outputs Y ∈ R1, the standard formulation of SVR under a given regularization
cost C and slack variables ε is defined as

min
w,b,ξ,ξ∗

1

2
wTw + C

(
L∑
i=1

ξi +

L∑
i=1

ξ∗i

)
(1)

s.t. wTφ(xi) + b− yi ≤ ε+ ξi

yi −wTφ(xi)− b ≤ ε+ ξ∗i

with ξi, ξ∗i ≥ 0, i = 1 . . . L, where the kernel function φ(xi) maps the feature vector xi

into a higher-dimensional space. This optimization problem is usually solved through
its dual formulation, using algorithms such as Sequential Minimal Optimization.

Multilayer Neural Networks. The proposed MNN consists of an input visual feature
layer, K hidden layers, and a single output neuron as an age regressor. All activation
functions are set to be log-sigmoid, σ(β, x) = 1

1+exp(−βx) . The prediction at layer k is

y(k) = σ(b(k) + Θ(k)y(k−1)), (2)

with y(1) = b(1) + Θ(1)x, where x ∈ X is the input vector to the MNN, b(k) a vector
of unitary bias neurons and Θ(k) a matrix of connection weights. The cost function is

C(Θ) =
1

M

(
−y logy(K) − (1− y(K)) log(1− y(K))

)
+

λ

2M

K∑
k=1

Θ(k)2, (3)

where y ∈ Y is the ground truth and λ prevents overfitting by `2-regularization. Due to
the log-sigmoid activations, the output regressor is factorized by 100 to directly provide
age estimates in the range [0 − 100]. Each backpropagation step is accomplished by
iterative unconstrained minimization of the multivariate cost function C(Θ), using

∂σ

∂θi
= βσ(β, θi) (1− σ(β, θi)) +

λ

M
θi (4)

as the multivariate gradient function for non-bias neurons. In our experiments, we used
β = 1 and set the number of minimization iterations to 10.

Random Forests. Random forests are ensemble learners used for either classifica-
tion or regression. The models are trained by applying bootstrap aggregation to Ntree
base classification and regression trees. During the learning stage, each tree hn, n =
1, . . . , Ntree samples with replacement a random selection of m-dimensional examples
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(XB ,YB) ∈ (X,Y). For each new grown node, a number mtry � m of predictor
variables θ are randomly selected, and the variable that provides the best binary split
over the bootstrapped subset according to some objective function is selected for that
node. A tree is grown until leaf nodes are pure, i.e. they consist of samples containing
a single label. When presented with new data, each tree individually predicts an output,
and a collective target response is provided by averaging or majority voting of the forest
{hn(X, θn)},∀n, for regression and classification problems, respectively.

Regularized Canonical Correlation Analysis. CCA is posed as the problem of relat-
ing data X to labels Y by finding basis vectors wx and wy such that the projections of
the two variables on their respective basis vectors maximize the correlation coefficient

ρ =
wx

TXYTwy√
(wxTXXTwx)(wyTYYTwy)

, (5)

or, equivalently, finding maxwx,wy wx
TXYTwy subject to the scaling wxTXXTwx=1

and wy
TYYTwy=1. For age estimation, labels in Y are unidimensional, so a least

squares fitting suffices to relate these labels to the projected data features. Thus, only
wx is computed, by solving the following generalized eigenvalue problem:

XYT
(
(1− γy)YYT + γyI

)−1
YXTwx = λ

(
(1− γx)XXT + γxI

)
wx (6)

Regularization terms γx, γy ∈ [0, 1] have been included in Eq. 6 to prevent overfitting.
Although CCA admits extension to a kernelized version, in that case covariance matri-
ces become computationally intractable with over 10K samples. In practice, regularized
CCA works comparably to KCCA [7], it is much less computationally demanding, and
will allow us to employ the same exact validation schemes over large databases.

4 Experimental Results

Age databases. Due to the nature of the age estimation problem, there is a restricted
number of publicly available databases providing a substantial number of face im-
ages labeled with accurate age information. The most well known examples in the
literature are the PAL database [11], with 580 frontal images from non-repeated sub-
jects; the FG-NET Aging Database [10], with 1,002 face images from 82 subjects; the
GROUPS database, with 28,231 faces of non-repeated subjects; the Face Recognition
Grand Challenge v2.0 (FRGC) database [15], with 44,278 images from 568 subjects;
and the MORPH II database [16], with 55,134 face images of 13,618 subjects.

PAL and FG-NET are comparatively negligible to the rest in terms of number of
samples. Additionally, age annotations in GROUPS are discretized into seven age inter-
vals, which makes it unsuitable for training accurate age regression models. Moreover,
FG-NET contains only 82 subjects, so a leave-one-person-out validation scheme is em-
ployed by convention, to avoid optimistic biasing by identity replication. Given such
limitations, and the recent tendency to use MORPH as a standard for age estimation,
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Fig. 2. Age distribution and density per database. In Age distribution the color represents the age.
In Density per age the color represents the density (white color more density). PAL and FG-NET
are relatively negligible compared to others, and GROUPS only provides age intervals, so we
focus on MORPH II and FGRC. Age samples are mainly skewed towards people who are 20–30
and 50 years old.

we concentrate on this database and on FRGC to provide experimental evaluations. Al-
though the FRGC database is comparable to MORPH regarding number of samples,
image quality and age range coverage, we were not able to find any previous publica-
tion on age estimation including FRGC as part of their experiments. This new database
for age estimation is described next. Figure 2 offers a graphical visualization and com-
parison of the analyzed databases, by number of samples and density of age ranges.

FRGC database [15] is presented in 2005 and contains approximately 50,000 im-
ages from 568 subjects. The database consists of four controlled still images, two un-
controlled still images, and one three-dimensional image for each subject session. Dif-
ferent sessions have been carried out during different years (2002, 2003, and 2004) with
the same subjects. The controlled images were taken in a studio setting, are full frontal
facial images taken under two lighting conditions (two or three studio lights). The un-
controlled images were taken in varying illumination conditions; e.g., hallways, atria,
or outdoors. Each set of controlled and uncontrolled images contains two expressions,
smiling and neutral. The 3D images were taken under controlled illumination condi-
tions appropriate for the Vivid 900/910 sensor. For our experiments we have used the
database without the 3D images, only 44k images. They are 56% male, and 44% fe-
male, 69% White, 1% Black, and 30% Asian. The age range is between 18− 70 years
old, with a proportion 56% between 18−22, 21% between 23−27, and 23% more than
28+ years old.

Metrics. We adopt the conventional metrics of Mean Average Error (MAE) and
Cumulative Score (CS) for comparison with recent literature. MAE computes the av-
erage age deviation error in absolute terms, MAE =

∑M
i=1 |âi − ai|/M , with âi the

estimated age of the i-th sample (i.e. y(K)
i in the case of the MNN), ai its real age and

M the total number of samples. CS [1, 19, 8] is defined as the percentage of images for
which the error e is no higher than a given number of years l, as CS(l) = Me≤l/M .
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Related publications typically supply either an eleven-point curve for age deviations
[0− 10], or simply the value CS(5). We provide both results for future reference.

The optimal HOG parameters were searched for so as to minimize the MAE score
over MORPH, using 5-fold cross-validation. In particular, the division into training and
validation sets was made so that all the instances of the same subject were contained in
one single fold at a time; this applies to all the experiments presented in this paper. We
found that the version of 8×8 and 9 bins per histogram granted the best results. In our
experiments, HOG descriptors are extracted directly from the aligned version of each
detected face. We observed that the best results were achieved by directly inputting
the per-cell, unitary-normalized HOG descriptors, without any further normalization.
The selected HOG feature has the advantage of being considerably more compact than
other features commonly used in the literature. For instance, the BIF feature in [13] is
4376-dimensional, whereas ours is only 576. This results in faster convergence of the
algorithm, less data complexity (deriving into fewer layers required), and a smoother
regularization parameter space for a similar expressive power.

SVR experiments were carried out using the ε-SVR implementation from the LIB-
SVM library3, with a Radial Basis Function kernel. All of our experiments employ the
same input features, i.e. the signed version of unit-normalized HOG over an 8× 8 grid
and 9 encoding bins. The optimal regularization cost C, and hyper-parameters γ and
ε have been independently obtained for each target database, through exhaustive loga-
rithmic grid search and 5-fold cross-validation. A similar grid search has been carried
out for RF, in order to adjust the optimal parameters Ntree and mtry. In this case, the
technique was particularly invariant to the choice of parameters.

The optimal architecture and regularization for the MNN have been explored through
grid-search again, dividing the target database into 20 folds. Each MORPH subset con-
tained over 3K samples, granting faster convergence.

Regarding CCA, only the regularization terms need to be optimized. Interestingly,
the best choice of regularization turned out to be γx = γy = 0. This is explained by
the size of the descriptor, which is orders of magnitude smaller than the number of
examples (576� L), and thus less prone to overfit the data.

Table 1 shows a thorough comparison with publications that supply cross-validation
MAE using MORPH (referred as MORPH-5CV). Unlike many previous works [1, 6, 7,
19], our MORPH-5CV experiment exploits the whole available set of 55K samples, by
training from 4 folds, testing over the remaining one and averaging all five combina-
tions.

Table 2 includes scores for FRGC as a future reference for the research community
(FRGC-5CV). Furthermore, we feel that cross-database (CDB) generalization would
be a challenging and interesting metric to take into account for validating the robust-
ness of a method. For this reason, we additionally include the generalization scores
obtained when training a whole database using its optimal 5CV parameters, and test-
ing it completely with the other database. These appear in the aforementioned table as
MORPH→FRGC and FGRC→MORPH, where the testing database appears last. These
results also prove the good generalization properties of the evaluated techniques.

3 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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MORPH-5CV
Technique Feature Train/test MAE CS(5)

WAS [10, 4] AAM+BIF 55K 9.21 –
AAS [4] AAS+BIF 55K 10.10 –
AGES [5, 4] AAM+BIF 55K 6.61 –
RED (SVM) [1] AAM 6K 6.49 48.9%
OHRank [1] AAM 6K 6.07 56.4%
OHRank [1, 4] AAM+BIF 55K 6.28 –
PLS [6, 7] BIF 10K/55K 4.56 –
kPLS [6, 7] BIF 10K/55K 4.04 –
IIS-LLD [4] AAM+BIF 55K 5.67 –
CPNN [4] AAM+BIF 55K 4.87 –
CCA [7] BIF 10K/55K 5.37 –
rCCA [7] BIF 10K/55K 4.42 –
kCCA [7] BIF 10K/55K 3.98 –
MFOR [19] PCA+LBP+BIF 4K 4.20 72.0%
SVM+SVR [8] BIF+ASM 78K 4.20 72.4%
SVR HOG 55K 4.83 63.4%
MNN HOG 55K 7.91 34.0%
RF HOG 55K 6.84 43.1%
rCCA HOG 55K 4.84 64.1%

Table 1. Age estimation results in MORPH II for the compared algorithms and visual descriptors,
in a variety of settings. Symbol (–) indicates unreported values.

MAE CS(5)
Validation scheme SVR ANN RF CCA SVR ANN RF CCA

MORPH–5CV 4.83 7.91 6.84 4.84 63.4% 34.0% 43.1% 64.1%
FRGC–5CV 2.88 4.34 4.08 4.41 89.2% 71.0% 82.1% 73.7%
MORPH→FRGC 7.55 7.47 8.92 7.43 41.3% 43.1% 30.5% 44.8%
FRGC→MORPH 8.89 8.90 9.51 8.50 39.1% 36.0% 33.6% 39.1%
Table 2. MAE scores and CS(5) percentages from all four classification schemes for MORPH
and FRGC, under the two validation scenarios.

Figure 3 shows CS curves for the MORPH database, comparing our four evaluations
with different published algorithms: BT, BP, kNN, SVM, SVR and RED-SVM [1];
OHRank[1]; MFOR [19]; and SVM+SVR [8]. In case of algorithm variations, best
curves were chosen. Likewise, Figure 4 shows the CS curves of our proposed algorithms
for MORPH and FRGC, both for 5CV and for the more challenging CDB validation
scenario. Table 2 details CS(5) scores for these validation scenarios. For those works
that facilitated the CS(5) score for the MORPH database, this metric has also been
included for comparison in Table 1.

When comparing the accuracy of the techniques, we see that CCA and SVR perform
similarly well, and comparable to state-of-the-art algorithms employing much more
complex features and preprocessing. We have observed that MNN is very sensitive to
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Fig. 3. Comparative of Cumulative Score curves from recent age estimation algorithms and our
four evaluations: HOG+SVR, HOG+MNN, HOG+RF, HOG+CCA.
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5 Cross Validation for MORPH and FRGC
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Fig. 4. Cumulative Score curves of the four evaluated techniques, for MORPH and FRGC, in (a)
5-fold cross-validation (5CV) and (b) cross-database validation (CDB) scenarios.

particular weight initializations, RF is quite invariant to its parameterization. Regarding
computational efficiency during training, the time lapse for a cross-validation fold is
approximately 9 hours for SVR, 5 hours for RF, 9 min for MNN and 3 sec for CCA, on
an Intel i7 computer at 1.6 GHz. This gives significant advantage to CCA.

5 Conclusions

We evaluated four machine learning techniques applicable to age regression from facial
images: SVR, MNN, RF and CCA. We demonstrated that replacing complex feature
extraction schemes with HOG features achieves comparable performance to the state-
of-the-art, while being faster and easily replicable. Our approach requires less feature
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tuning; it does not involve statistical face models requiring precise annotation of tens
of facial landmarks; and it does not require additional cues. During the method com-
parison, CCA and SVR similarly provided the best accurate results, although the com-
bination of HOG+CCA proved to be the most computationally efficient and straight-
forward, not even requiring parameter adjustment. Furthermore, we introduced FRGC
as a suitable (and so far unnoticed) large database for age estimation, and proposed a
cross-database validation scheme to test the generalization of age estimation methods.
Further research should explore the incorporation of additional cues such as gender and
ethnicity. These cues have been effectively used in the past to increase age estimation
accuracy [7].
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