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Abstract—The goal of face detection is to determine the
presence of faces in arbitrary images, along with their locations
and dimensions. As it happens with any graphics workloads,
these algorithms benefit from data-level parallelism. Existing
parallelization efforts strictly focus on mapping different di-
vide and conquer strategies into multicore CPUs and GPUs.
However, even the most advanced single-chip many-core pro-
cessors to date are still struggling to effectively handle real-
time face detection under high-definition video workloads. To
address this challenge, face detection algorithms typically avoid
computations by dynamically evaluating a boosted cascade
of classifiers. Unfortunately, this technique yields a low ALU
occupancy in architectures such as GPUs, which heavily rely
on large SIMD widths for maximizing data-level parallelism.
In this paper we present several techniques to increase the
performance of the cascade evaluation kernel, which is the
most resource-intensive part of the face detection pipeline.
Particularly, the usage of concurrent kernel execution in
combination with cascades generated with the GentleBoost
algorithm solves the problem of GPU underutilization, and
achieves a 5X speedup in 1080p videos on average over
the fastest known implementations, while slightly improving
the accuracy. Finally, we also studied the parallelization of
the cascade training process and its scalability under SMP
platforms. The proposed parallelization strategy exploits both
task and data-level parallelism and achieves a 3.5X speedup
over single-threaded implementations.

Keywords-Face detection, GPU, parallel programming, video
processing

I. INTRODUCTION

Currently available face detection algorithms usually rely
on feature descriptors that perform a large amount of opera-
tions to identify which image regions contain human faces.
As image and video resolutions for complex computer vision
applications increase, hardware designers should also meet
the demand in continued scaling of performance.

Addressing this challenge is only possible through the us-
age of massively parallel microarchitectures that are highly
efficient in terms of performance per watt. Even though the
latest multicore CPUs feature instructions with an increased
SIMD width such as the AVX extensions, GPUs yield more
performance with less energy consumed per floating-point
operation [1]. For this reason, data centers are increasingly
relying on GPUs and heterogeneous architectures to run
computer-intensive services such as object or face search
in photos and videos.

Recent advances in face detection propose using features
such as LBP[2], SIFT[3] or SURF[4] that were originally
designed for object recognition [5]. These efforts were made
not only to improve the speed of detection but also to
yield a better ROC curve performance. Although the feature
extraction step is inherently parallel, modern face detection
methods still rely on an attentional cascade derived from a
learning algorithm for discarding computations. Therefore,
the main parallelization challenge when evaluating these
cascades in GPUs is how to solve the low utilization of
GPU resources derived from early rejections and thread
divergence.

In this paper we present a highly parallel face detection
implementation that relies on GentleBoost [6] and con-
current kernel execution for increasing the occupancy in
GPUs. Moreover, we show that a multi-level parallelization
and the proper customization of the boosted cascade of
classifers not only reduces the execution time, but also
slightly improves the detection quality. The obtained results
show that our GPU face detector is capable of detecting
multiple faces in real time at 70 fps under 1080p resolutions
while performing H.264 video decoding. Additionally, we
also study the scalability of the parallelization of the cascade
training process under SMP architectures.

This paper is structured as follows: Section 2 provides
an overview of the related work. Section 3 describes the
parallelization strategy and pipeline used for performing
face detection. Section 4 discusses the parallelization of the
cascade training process. Section 5 details the experimental
setup. Section 6 conducts an evaluation of the obtained
cascade and shows the experimental results of our GPU face
detector implementation. Finally, in Section 7 conclusions
are drawn and future work is proposed.

II. RELATED WORK

Modern face detection frameworks are usually built from
the combination of an image feature extraction process and
classifiers resulting from a given learning algorithm. Viola
and Jones [7] introduced the first face detector that worked
at a reasonable speed with low error rates. With the selection
of lightweight Haar features and the usage of integral images
they showed that it was possible to dramatically reduce the
required memory accesses and computations. Another major
contribution was the introduction of a cascade organized in



stages constituted by a gradually larger number of classi-
fiers to quickly reject image regions. In this approach, the
classifiers were created with AdaBoost [8] and structured in
stages using heuristics based on false positive and hit rates.

Most of the existing works in GPU face detection are par-
allelized versions of the original Viola and Jones framework.
Sharma et al. [9] proposed a parallel detector based on an
image pyramid with the purpose of maximizing the thread
count and thus GPU occupancy. Instead of scaling sliding
windows for detecting faces of arbitrary sizes, the window
is kept constant and the input image downscaled.

Hefenbrock et al. [10] examined the tradeoffs between
feature, window and scale parallelization and concluded
that all three alternatives suffer from unbalanced distribution
of work. They proposed a multi-GPU solution where each
detection window is evaluated in a different thread, and each
window scale computed in parallel in a different GPU.

Obukhov [11] presented an implementation that combined
pixel-parallel and stage-parallel processing kernels. Since
the amount of classifiers per stage grows with the depth of
the cascade, occupancy is maximized when a pixel-parallel
kernel is used for the strong classifiers and a stage-parallel
kernel for the weaker ones.

As opposed to the previous works, Herout et al. [12] intro-
duced a new GPU object detector based on WaldBoost [13]
and LRP features [14]. In this approach, the evaluation of
the cascade generated by WaldBoost is parallelized with
a fixed-sized detection window and the low occupancy
problem addressed with thread rearrangement. All image
locations that have not been early rejected are reassigned
into threads that share the same blocks. Then the cascade
evaluation kernel is relaunched to process these blocks, and
thread rearrangement repeated until all image locations are
computed.

III. PARALLEL FACE DETECTION

The growing trend in the high performance computing
semiconductor industry is to devote a larger amount of
the die area in several parallel processing units, structured
among blocks of multithreaded SIMD lanes and private
local caches. GPUs push to the limit this architecture by
executing hundreds of thousands of threads, but may yield
poor performance if the workloads are unbalanced. Even
though modern face detection algorithms benefit from the
data-level parallelism inherently derived from pixels, the
feature evaluation process suffers from an irregular control
flow when implemented in a kernel function. In this section,
we introduce a pipeline that exploits different degrees of
parallelism for increasing the performance of the face detec-
tion process in modern GPUs using the CUDA programming
model.

A. Pipeline Overview
Typically, the face detection pipeline (see Figure 1) starts

from an image or video frame. Since it is now common

to have an on-die hardware video decoder, time consuming
tasks such as the decoding of 1080p high definition H.264
video streams can be offloaded at the slice level to this fixed
function logic. When the video decoding stage is performed
in a GPU, the latency of memory transfers between the CPU
and GPU address space is significantly reduced due to the
fact that these transfers deal with compressed video frames.
Through the usage of GPU hardware video decoding APIs
(e.g. NVCUVID [15]), the decompressed video frames are
then directly mapped into the texture memory.
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Figure 1. Proposed pipeline for parallel face detection.

At this point, the scaling stage generates n resized images
by subsampling the decompressed frame stored in the texture
memory. Since this memory is indexed using floating point
coordinates, it is possible to configure it for performing
texture fetches with linear interpolation using tex2D in-
structions [16]. The main reason for building this image
pyramid is to avoid rescaling the features for detecting faces
of an arbitrary size when evaluating the classifier cascade.
As it was discussed in previous works [9], [11], [12], GPU
occupancy is extremely low if the features are scaled and
the image dimensions kept constant. In the latter case, if
a single thread evaluates the classifier cascade for a given
sliding window, the potential number of threads dramatically
reduces as the size of the window increases (see Figure 2).
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Figure 2. Different strategies for evaluating a boosted cascade of
classifiers.

The filtering stage of the pipeline is necessary to avoid
aliasing effects produced during the scaling stage, and thus
preserve the original properties of the underlying image
signal. After this stage has been completed, integral images
are computed by exploiting multiple levels of parallelism
with a combination of parallel prefix sum [17] [18] and
matrix transposition operations [19]. By using this approach,
coarse-grain parallelism is exploited through concurrently
executing the kernels that implement the abovementioned
operations for each one of the considered scales. Fine-grain
parallelism is subsequently exploited at thread-level within
each kernel.

Finally, the face detection pipeline concludes with the
evaluation of the boosted cascade of classifiers from the
integral images. This stage is the most resource-intensive
and also exploits two degrees of parallelism. From a low-
level perspective, a divide and conquer strategy is used for
evaluating the cascade within a kernel, and the analysis
of the input integral image performed by splitting it into
equally-sized blocks corresponding to a different fixed-sized
sliding window. With this parallelization pattern, faces of
multiple sizes are thus detected by concurrently executing
the same kernel for each integral image corresponding to a
different scale.

B. Integral Image Computation

The parallelization of integral image computation was
initially discussed by Hensley et al. [20] and implemented
using row-wise and column-wise prefix sum operations in
shaders. This approach was later refined by Messom et
al. [21] and Bilgic et al. [22] by introducing matrix transpo-
sitions after performing row-wise prefix sum operations. For
small resolutions a naive sequential O(n ·m) CPU imple-
mentation beats the GPU due to the fact that the whole image
fits in the L2 cache. However, the GPU implementation is
2.5 times faster on average for high resolution images [23].

C. Cascade Evaluation Kernel

A typical data-parallel face detection kernel must perform
an exhaustive evaluation of a boosted cascade of classifiers
organized in stages containing an increasingly larger number

of filters. In order to detect faces of any size at multiple loca-
tions, the kernel not only has to test all integral image pixels,
but also consider all possible sliding window dimensions
and locations. This algorithm could also be significantly
improved by performing rotations of the integral image, thus
exponentially increasing the required amount of computa-
tions. Due to the particular properties of boosting algorithms,
the traversal of the cascade data structure is constrained by
the dependencies between stages, and must be sequentially
evaluated for each candidate window. For these reasons, we
propose a parallelization pattern, where each integral image
Iint corresponding to a different downscaled video frame is
divided into small and equally-sized n×m chunks.
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Figure 3. Evaluation of the classifier cascade for a given block thread.

Each chunk is directly mapped into a different thread
block B(i, j), which is then scheduled to a streaming
multiprocessor (SM). Let W be the memory chunk to be
transferred to a SM, the pixels of a given integral image Iint
to be transferred by a given (x, y) thread of an n×m thread
block B(i, j) are determined by the following equations:

W (x, y) = Iint(α, β) (1)

W (x+ n, y) = Iint(α+ n, β) (2)

W (x, y +m) = Iint(α, β +m) (3)

W (x+ n, y +m) = Iint(α+ n, β +m) (4)

Where α = i ·n+x and β = j ·m+y. According to these
definitions, each thread of the block will bring 4 pixels of the
integral image to the shared memory, where 3 of them will
be of memory regions meant to be explored by contiguous
blocks (see Figure 3). Additionally, these access patterns are
sequentially performed to achieve memory coalescing.

After these memory transfers have been completed (and
ensured by a _syncthreads barrier instruction), the next
step of the algorithm is to evaluate the cascade classifiers.
This evaluation is both an arithmetic and a memory intensive
operation. For a boosted cascade of Haar classifiers, it
involves 18 memory accesses for the 2-rectangle feature and
27 memory accesses for the 3-rectangle feature.



Table I
POSSIBLE HAAR-LIKE FEATURE COMBINATIONS (24X24 PIXELS)

Haar-like Feature Shape Combinations

Edge 55660

Line 31878

Center-surround 3969

Diagonal 12100

For instance, a given rectangle of a Haar feature is defined
by its (i, j) location within the n × m fixed-sized sliding
window, its w × h dimensions, and the 4 values of the
integral image used for computing the area, thus requiring 9
memory accesses. Additionally, it is also required to perform
between 4 and 5 arithmetic operations in order to estimate
the filter response for each feature. Therefore, the main
objective is to reduce latency when fetching from memory
all required feature attributes (i.e. dimensions, coordinates
and weights) with the purpose of keeping the ALUs busy
and thus maximize throughput.

Since these particular information is continuously reused
when evaluating the cascade features for each integral image
element, the right approach would involve moving all fea-
tures to the constant memory before launching the evaluation
kernels. Moreover, it is also expected that threads processing
adjacent pixels start evaluating the cascade features at the
same initial stage and diverge in later iterations. In this
situation, the usage of the constant memory is appropriate
due to the fact that is specifically designed for broadcasting
values for all warp threads that simultaneously access the
same memory address. In order to maximize the information
stored in the constant memory, the Haar feature dataset can
be compressed. Since all bits of the thresholds, coordinates,
dimensions and weight values are not significant, we propose
reencoding and combining them into two 16-bit words using
simple bitwise operations and masks.

D. Display

The output of the concurrent execution of the cascade
evaluation kernel is a collection of arrays with the same
dimensions as the integral images, and stored in the global
memory. Each element (x, y) of these arrays is an integer
that represents the deepest stage of the cascade reached
during the evaluating process. Therefore, the image region
enclosed in a sliding window starting at (x, y) would be
considered as a face if the integer value stored there equals
the maximum depth of the cascade. The precise dimensions
of the sliding window are determined by multiplying the
downscaling factor by the normalized dimensions of the
faces that have been used during the cascade training pro-
cess. The abovementioned operations are implemented in
the display kernel. This kernel is concurrently executed for
each scale and encloses faces in a rectangle by updating

the RGB values of the original input image or video frame.
Finally, the RGB image is mapped into a standard texture
for displaying it using the CUDA-OpenGL interoperability
API.

IV. CASCADE TRAINING PROCESS

The amount of features and the way in which they are
arranged in a cascade of classifiers have severe implications
in both the computational performance and the accuracy of
any face detection process. Therefore, the main challenge
is to reduce the quantity of features while preserving the
detection accuracy. This reduced feature set would imply
less memory accesses and a lower computational footprint,
thus effectively speeding up the face detection process.

For these reasons, we decided to build from scratch
an optimized cascade using the GentleBoost [6] learning
algorithm. Furthermore, due to great number of Haar-like
feature combinations that must be tested during the offline
boosting-based training, we parallelized GentleBoost using
a combination of task and data-level parallelism.

Task parallelism is exploited by creating as many threads
as Haar filters are required to be evaluated for each com-
bination hypothesis. Data-level parallelism is exploited by
mapping Haar filters to vectors and then evaluating them
using the SSE4 extensions for each image in the training
set database. With this simple parallelization pattern, we
implemented GentleBoost using a single large loop, which
iteratively builds a cascade by adding at each iteration a new
classifier until both the target hit and false acceptance rate
are met. An additional bootstrapping routine is added at the
end of the loop to avoid redundancy in the set of background
images, while improving the discriminative power of the
boosting algorithm.

In order to select the proper classifier, at each iteration
all the combinations presented in Table I must be tested for
each image of the training set. This latter nested loop is split
into 4 different loops (one corresponding to each Haar filter
type) and then parallelized with OpenMP using the #pragma
omp parallel for construct.

The training set used for building the cascade consisted of
11742 frontal faces of 24x24 pixels and 3500 backgrounds
which are also required for providing negative examples.
Each 24x24 image is then packed in a big matrix using the
Eigen v3 C++ template library [24]. As Figure 4 shows, each
iteration of the parallelization loop gathers the coordinates
and dimensions of the two rectangles constituting the Haar
edge feature. This is implemented by accessing the haar2

matrix, which contains as many rows as feature combina-
tions. By contrast, each column of this matrix contains the
x, y coordinates and w×h dimensions of the two rectangles.

Therefore, each thread corresponding to a given i iteration
of the loop will evaluate a different i Haar feature combi-
nation, for all faces and backgrounds of the training set. In
order to speedup the evaluation process, the dataset matrix



#pragma omp parallel for
for(int i=0; i<haar2.rows(); i++)
{
VectorXi eval(dataset.cols());
eval = (-1) * (dataset.row(haar2(i,0)) +

dataset.row(haar2(i,1)) -
dataset.row(haar2(i,2)) -
dataset.row(haar2(i,3))) +

2 * (dataset.row(haar2(i,4)) +
dataset.row(haar2(i,5)) -
dataset.row(haar2(i,6)) -
dataset.row(haar2(i,7)));

regression(eval, i);
}

Figure 4. Parallel loop for testing edge feature combinations.

stores the precomputed values of the integral images of the
training set rather than the original pixel values.

The data-level parallelization pattern exploits the fact that,
since all integral images have the same dimension (24x24
pixels), it is then possible to encode each of them in a single
column of the dataset matrix using 576 rows. Hence, this
matrix will have as many columns as integral images the
training set has. With this simple data transformation, the
filter response of each Haar feature to be tested is easily
vectorized with SSE4 through the overloaded arithmetic
operators provided by the Eigen library.

At the end of the loop, the thread private eval vector is
used for storing the result of the evaluation of the i Haar
feature for the whole training set. Then, the regression

function is called for estimating the parameters of the weak
classifiers from the filter responses stored in eval.

Finally, when the four parallelized loops that test the
different Haar feature types conclude, a ranking function
selects the weak classifier that best discriminates between
faces and backgrounds. This weak classifier is then added
to the cascade, and the main external loop continues until
the target hit and false acceptance rate are achieved.

V. EXPERIMENTAL SETUP

In order to evaluate the performance and the accuracy
of our proposed GPU face detection implementation, we
built a benchmark dataset by retrieving a collection of 10
videos from the iTunes Movie Trailers website [25]. All
the selected movie trailers featured a 1920x1080p resolution
with an average bitrate of 9 Mbps and were originally
compressed using the H.264/AVC codec in a QuickTime
container format. The testing platform was equipped with
an Intel Core i7-2600K 3.4 GHz, quad-core CPU and an
NVIDIA GTX470 graphics card. For the implementation
of the GPU kernels, we targeted the CUDA Toolkit 4.1
for Linux and the sm_20 architecture. Since the on-die
GPU video decoder works with bitstreams, we relied on the
libavformat library [26] for demuxing the input videos.
Then the demuxed H.264 video frames were enqueued and
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Figure 5. Face detection elapsed time per frame for the 50/50 movie trailer.
The obtained results show the difference between serial and concurrent
kernel execution for two different cascades: the OpenCV frontal feature set
and ours.

decoded using the CUVID callback functions, and finally
mapped to a GPU pointer for conducting further processing
with the CUDA kernels. Since the hardware decodes frames
in NV12 format, it is enough to consider only the initial
array of luminance components as the input of the scaling
process and subsequent pipeline stages.

For measuring the performance of the GPU kernels,
we relied on the CUDA compute command line profiler
[27]. Unfortunately, the profiler does not allow gathering
values from the performance counters while concurrently
executing kernels. To avoid kernel serialization, we enabled
and disabled the conckerneltrace profiling directive be-
tween multiple executions. The objective was to capture the
timestamps of the kernels issued in different streams, while
performing face detections in a video, in order to determine
whether they were effectively overlapping computations or
not. Similarly, concurrent execution was deliberately dis-
abled for measuring statistics such as branch and control
flow divergence in each streaming multiprocessor (SM).



Finally, we selected the OpenCV frontal face feature set
designed by Lienhart et al. [28] as a baseline for estimating
the accuracy of our own cascade, and also for comparing our
parallel detector with the cascade used in previous works
[11].

VI. RESULTS

Since we have relied on a combination of parallelization
and cascade tuning for speeding up face detection on GPUs,
we have not only analyzed the computational performance,
but also the accuracy in terms of true and false detections.
Even though the cascade training process is carried out
offline, it is also a time-consuming process (i.e. usually
requiring several days of computation in a quad-core work-
station), and should be repeated several times with fine-tuned
parameters in order to achieve good results. For this reason,
we have also measured the speedup of our parallelized
implementation of GentleBoost.

A. Performance

Due to the followed parallelization pattern, we empha-
sized metrics such as the execution time and branch diver-
gence rather than the memory bandwidth achieved by the
cascade evaluation kernels. Since initially integral images
are stored in the GPU DRAM memory, and then moved
in chunks to the shared memory before performing any
computation, the obtained DRAM read throughput for this
specific kernel was low. Particularly, it ranged between 532
MB/s and 9.57 MB/s depending on the kernel corresponding
to each downscaled input image.

Even though the integral image computation kernels (i.e.
scan and parallel matrix transposition) are computationally
intensive, they only account on average for a 20% of the
total face detection computation time. Given that they were
extensively analyzed in previous works [22] [23], we strictly
focused on profiling the cascade evaluation kernel and the
latency of the whole face detection process.

As Table II shows, switching from serial to concurrent
kernel execution doubles the performance when detecting
faces in video frames of the selected 1080p movie trailers.
Therefore, the low GPU occupancy achieved by serially
executing the kernels corresponding to smaller scales is
thus effectively avoided when these scales are processed
in parallel. The impact on performance of overlapping the
cascade evaluation kernel computations for small scales is
visible in the execution trace depicted in Figure 6. This
trace was produced by gathering the initial and final ex-
ecution timestamps of each kernel during profiling. Since
each kernel is mapped into different CUDA streams, the
GPU scheduler is capable of issuing and executing thread
instructions from different kernels.

The results also show that replacing the OpenCV feature
dataset with our own cascade offers an additional 2.5X per-
formance improvement. Therefore, the combined approach
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Figure 6. Execution trace of the cascade evaluation kernels for a
given video frame of the 50/50 movie trailer. The kernels processing the
smaller image scales are executed completely overlapped for maximizing
performance.

(i.e. concurrent execution + our cascade) offers a 5X speedup
over the serial kernel execution of the OpenCV cascade.
Although both cascades feature 25 stages, the OpenCV
cascade has 2913 weak classifiers, whereas ours has only
1446. As expected, this reduction in the Haar feature count
translates in fewer computations and memory accesses thus
reducing the face detection latency.

It should be noted that Table II represents only the face
detection elapsed time, and does not take into account
the H.264 video decoding latency. As it was discussed in
Section III, this task is completely offloaded to the on-die
GPU video decoder. For the selected movie trailers, the
average decoding latency of a given frame ranged between
8 and 10 ms thus yielding an average throughput of 70 fps
when performing both tasks (i.e. video decoding and face
detection) in the GPU.

As Figure 5 depicts, the face detection latency per frame
for a given movie trailer may experience a huge variability.
This latency basically depends on the number of faces that
appear on each video frame. Since both cascades were
trained using backgrounds and other objects as examples
of non-faces, the image regions that do not have any faces
are quickly rejected during the cascade evaluation process.
Similarly, it also shows that the OpenCV cascade face
detection latency pattern is quite similar to our cascade, but
violates several times the 40 ms deadline (i.e. the limit for
displaying the video at 24 fps) when kernels are serially
executed. This slowdown may be also noticeable when the
H.264 video decoding latency is also considered for the
concurrent OpenCV cascade evaluation.

Usually, thread divergence is one of the most undesired
side effects that negatively affects performance when porting
serial applications to the multithreaded SIMD architectures
of modern GPUs. Due to the fact that each warp thread



Table II
AVERAGE FACE DETECTION TIME PER FRAME (MILLISECONDS)

Movie Trailer Our cascade OpenCV cascade
Concurrent Serial Concurrent Serial

21 Jump Street 4.17 8.53 10.91 22.12
50/50 4.91 10.17 13.58 27.86

American Reunion 4.01 8.12 9.98 20.12
Bad Teacher 4.8 9.13 12.43 23.37

Friends With Kids 4.68 9.11 12.52 24.05
One For The Money 4.17 8.43 10.72 21.40

The Dictator 4.7 8.99 12.55 22.65
Tim & Eric’s Billion Dollar Movie 4.83 9.03 12.56 22.66

Unicorn City 4.23 8.41 11.03 20.99
What To Expect When You’re Expecting 4.13 8.52 10.43 20.51
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Figure 7. Rejection rates for each cascade stage and image scale for the
movie trailer What To Expect When You’re Expecting.

evaluates the cascade of classifiers for a different sliding
window, our proposed parallelization pattern may potentially
yield a high percentage of divergent branches. Under this
scenario, multiple threads of a warp could trigger an early
exit at the first stages of the cascade during the evaluation,
while the others finish in deeper stages. This situation would
force some warp threads to stall thus underutilizing the GPU
resources.

In order to determine the branch efficiency of the cascade
evaluation kernel, we gathered the ratio of non-divergent
branches to total branches during execution using the GPU
performance counters. The obtained results showed that on
average 98.9% of branches were non-divergent.

The reason for this behaviour is that when a given warp
evaluates the boosted cascade of classifiers, adjacent integral
image elements mostly end at the same stage. Since our
parallel face detector stores in the GPU global memory
the deepest stage reached during the cascade evaluation
process, we decided to keep this information saved in the
CPU address space for all pixels and scales across all
video frames. The purpose of this task was to study the
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Figure 8. Execution time for a single iteration of the parallelized version
of GentleBoost under different SMP scenarios.

distribution of the deepest stage reached by all GPU threads
when evaluating the pixels of a given video frame for each
considered scale.

Figure 7 shows the aggregated results obtained for all the
video frames of a selected movie trailer. On average, a thread
evaluating a window starting at a given (x, y) pixel yields
a rejection rate of 94.52% at the first stage of the cascade,
and thus quickly discards non-face regions. Similarly, the
average rejection rate for the second stage was 4%, and
then it is dramatically reduced for the remaining stages. The
results for the other movie trailers were virtually the same.

To conclude, we also evaluated the scalability of the
parallelized cascade training algorithm under two different
SMP scenarios. Since this process usually takes several days,
we decided just to measure the speedup obtained in the first
iteration of the main loop of the GentleBoost algorithm.
Furthermore, since each iteration of the main loop must
test all possible Haar-like feature combinations for all input
images, the performance improvement should be noticeable.
The algorithm was executed using as an input the dataset
described in Section IV, and the number of threads modified



between multiple runs by setting the OMP_NUM_THREADS

environment variable accordingly. As Figure 8 depicts, the
obtained speedup was close to 3.5X in both scenarios when
the inner loops were parallelized with 8 threads. Even though
we executed GentleBoost on a workstation equipped with
two quad-core CPUs (Intel Xeon E5472), a newer single
quad-core Intel Core i7-2660K outperformed the latter with
a 2X performance improvement on average.

B. Accuracy

There exists several proposals of metrics in the literature
to represent the degree of match between an object detection
di and an annotated region lj . One of the most used metrics
is the ratio of intersected areas to joined areas [29], defined
as:

Ssquare(di, lj) =
area(di) ∩ area(lj)
area(di) ∪ area(lj)

(5)

Nevertheless, this score loses significance when the ap-
plied preprocessing face alignment techniques are different
among cascades. The reason is that the localization of the
facial content within the candidate windows may not be
aligned in this case. The score based on the ratio of inter-
sected areas also does not account for rotations of the face.
Hence, the following distance metric is proposed instead,
which is based on the annotated and predicted localization
of the eyes:

Seyes(di, lj) =
dle + dre

min(d1, d2)
(6)

The dle and dre values are the pixel distances between
predicted and annotated locations of the left and right eye
in the image, respectively; and d1, d2 are the pixel distances
between the eyes according to each cascade.

In practice, for each face in an image, the proposed face
detection pipeline results in a large number of detection
windows at slightly different positions and scales. In order to
associate them with the available ground truth annotations,
overlapping detections first require to be grouped together.
To do so, we consider that two detection windows di and
dj overlap whenever Seyes(di, dj) < 0.5. Then, an iterative
process reduces the initial set of windows by progressively
averaging those with the highest overlapping. Finally, each
detection window in the reduced set is assigned to the ground
truth annotation lj employing the Hungarian algorithm [30],
by establishing the Seyes(di, lj) metric as a cost function.

Based on the resulting associations, the accuracy is eval-
uated by means of a curve similar to the conventional ROC,
following the recommendations discussed in [29]. Each non-
matching association is accounted as a false positive (FP),
whereas matchings increase the number of true positives
(TP). True positive rates (TPR) are obtained by dividing TP
by the total number of faces in the ground truth dataset.
In addition, a large set of backgrounds (i.e. images not
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Figure 9. TPR/FP curves for OpenCV feature set and our cascade (15,
20 and 25 stages)



containing faces) has been used to obtain statistics about
false positives (FP). Lastly, the resulting curve is plotted
by varying a threshold over the detection score, and thus
obtaining different combinations of the ratio TPR/FP.

Several tests have been conducted over the subset of
visible light mug shot frontal images of the SCFace database
[31], which has been increased with 3000 high-resolution
background images. The accuracy of the face detection
algorithm at stages 15, 20, and 25 is shown in Figure 9 for
each of the two cascades. In addition, the level of discrimina-
tion increases as more stages are considered. Although the
proposed cascade contains less filters, the obtained results
show that generally outperforms the OpenCV cascade in
terms of TPR/FP.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a highly parallel GPU
face detector that is optimized for HD videos. Our pro-
posal heavily exploits concurrent kernel execution and a
customized cascade for dramatically reducing the detection
latency, while slightly improving the detection accuracy. The
obtained results show that the combination of both tech-
niques yields a 5X speedup over the fastest implementations
known to date.

Even though we have relied on our own cascade for
achieving these results, the usage of concurrent kernel
execution with a fixed-sized sliding window has proven to
be useful for increasing the GPU occupancy of any feature
dataset (e.g. OpenCV). Furthermore, we also presented a
SMP parallel GentleBoost implementation that exploits both
task and data-level parallelism for reducing the duration
of the cascade training process. With the combination of
OpenMP and the SSE4 vector extensions we showed that it
was possible to obtain a 3.5X speedup over the conventional
serial implementation with little effort.

Finally, as a future work we plan to port our parallel face
detector to other platforms such as the Intel Many Integrated
Core (MIC) architecture, and further improve the accuracy
of our feature set with soft cascades [32].

ACKNOWLEDGEMENTS

This work has been partially supported by the European
Commission in the context of the HiPEAC3 Network of Ex-
cellence (FP7/ICT 287759), the Spanish Ministry of Educa-
tion (TIN2007-60625, TEC2010-21040-C02-01, CSD2007-
00050), the Generalitat de Catalunya (2009-SGR-980), and
Herta Security.

REFERENCES

[1] S.W. Keckler, W.J. Dally, B. Khailany, M. Garland, and
D. Glasco. GPUs and the Future of Parallel Computing. IEEE
Micro, 31(5):7–17, 2011.

[2] T. Ahonen, A. Hadid, and M. Pietikäinen. Face Recognition
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