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Abstract

This work presents a novel two-step algorithm to estimate the
orientation of speakers in a smart-room environment equipped
with microphone arrays. First the position of the speaker is
estimated by the SRP-PHAT algorithm, and the time delay of
arrival for each microphone pair with respect to the detected
position is computed. In the second step, the value of the cross-
correlation at the estimated time delay is used as the fundamen-
tal characteristic from where to derive the speaker orientation.
The proposed method performs consistently better than other
state-of-the-art acoustic techniques with a purposely recorded
database and the CLEAR head pose database.

Index Terms: Head pose; speaker orientation; acoustic source
localization

1. Introduction

In recent years, significant research efforts have been focused
on developing human-computer interfaces in intelligent envi-
ronments that aim to support human tasks and activities. The
knowledge of the position and the orientation of the speakers
present in a room constitutes a valuable information allowing a
better understanding of user activities and human interactions
in those environments, such as the analysis of group dynamics
or behaviors, deciding which is the active speaker among the
participants or determining who is talking to whom.

The interest in this problem based on multi-channel speech
observations is so recent that very few works can be found in
the speech related literature. Most of the recent proposals have
been done in relation to robust sound localization systems rather
than stand-alone orientation estimation algorithms. The main
motivation is that taking into account the possibly degrading ef-
fects of the head orientation into the localization algorithm may
yield to more reliable source positions estimates [1]. This is the
case of [2], that based on the SRP-PHAT algorithm, extends the
exploration space with an orientation dimension by weighting
the contribution of each microphone pair for different possible
orientations. A similar approach also based on the SRP-PHAT
algorithm can be found in [3], named the Oriented Global Co-
herence Field (OGCF) method. More recently, a work has been
proposed by the same authors of [3] that tackles the problem of
talker localization and estimation of head orientation from the
perspective of the classification of SRP-PHAT or OGCEF spatial
likelihood functions [4].

On the other hand, other approaches to head orientation
estimation are based on the measurement of the acoustic en-
ergy, relying on radiation and propagation characteristics of the
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speech signal, given that the speaker position is known before-
hand. Usually, these methods need frequency weighting to en-
hance the directional components of the voice and must account
for bad microphone gain calibration and require accurate esti-
mation of propagation attenuation. An example of this approach
is presented in [5, 6, 7], employing a large-aperture array con-
sisting of 512 microphones, which completely surrounds the
speaker in the horizontal plane. In scenarios, where it is not
possible to calibrate the gain of the microphones, the work pre-
sented in [8] proposes to normalize the energy at each micro-
phone using the ratio between the energy of high band and low
band of frequencies (HLBR). Low frequencies are being radi-
ated by the human head with almost the same intensity in all di-
rections, therefore this value is used as a normalizing value, that
partly compensates for different microphone gains and propa-
gation losses. The results obtained by the HLBR measure are
compared to those obtained by SRP-PHAT based methods in
[9]. A similar approach is followed by the authors in [10], where
the HLBR is conducted using cross-correlation features instead
of acoustic energy. Recently, the use of artificial neural net-
works (ANN) has been reported in [11] that uses the time delay
estimates (TDEs), source position estimates, distance estimates,
and energy features as parameters of the ANN.

In this work, the GCC-PHAT cross-correlation function be-
tween pairs of microphones is deeply studied as a basis for
speaker orientation estimation. A two step algorithm is pro-
posed for first estimating the position and then the speaker
orientation based on cross-correlation orientational cues. The
comparison of this orientational characteristic among the mi-
crophone pairs distributed across the room provides the most
probable orientation of the speaker at each iteration. The pro-
posed method has very low computational demand and has a
good performance in adverse scenarios due to the robustness
offered by the GCC-PHAT technique, that effectively reduces
the impact of reverberation and background noise. Experimen-
tal results were conducted over the CLEAR head pose database
and a secondary database recorded purposely in the UPC Smart
room involving several speakers, positions and orientations.

2. Head radiation pattern

Human voice is mostly radiated from the mouth aperture. Other
parts of the body also radiate energy such as the nose or throat
in the articulation of certain phones. In addition to that, the
radiated sound field is affected by the whole body, and in par-
ticular, the head, shoulders and chest refract and absorb part of
the sound. Therefore, the human head radiation pattern depends
on the physical characteristics of the person. Moreover, during
normal speech the radiation pattern is constantly changing, be-
ing dependent on the articulated phoneme.

The measurements reported in the literature show that hu-
man talkers do not radiate voice sound uniformly in all direc-
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Figure 1: Mean broadband directivity measures of a human
talker in the horizontal plane, based on measures from [12].

tions; more energy is radiated in talker’s forward direction than
towards the side or the rear direction. The head radiation pattern
is also directional with a higher directivity with increasing fre-
quency and mouth aperture size. The phase of the sound field is
also affected depending on the angle. The broadband directivity
in the horizontal plane as measured in [12] is depicted in Fig. 1,
where one can observe a difference of 20 dB depending on the
frequency and the angle to the head.

According to these observations, it becomes evident that
the quality of the speech captured by a far-field microphone
in an indoor environment, in addition to be dependent on the
noise and reverberation characteristics of the room, it is also de-
pendent on the relative orientation of the speaker with respect
the recording microphone. Consequently, speech applications
based on these signals are also affected by head orientation and
non uniform speech radiation pattern. Moreover, microphones
located at a significant angle from a speaker capture a low-
passed version of the signal picked by microphones on the front
of the mouth. This has strong consequences for beamforming
techniques, whose input signals may include a low-passed ver-
sion of the speech. The phase change also decreases the per-
formance of beamformers that compute the channel beamform-
ing delays based on the estimated location of the speaker, since
the signals are not combined coherently. Compensating for this
harming effects, requires the accurate estimation of the time
varying radiation pattern of a speaker.

3. Acoustic source localization
3.1. GCC-PHAT algorithm

In a multi-microphone environment, one of the observable clue
with positional information more commonly used in acoustic
localization algorithms is the time delay of arrival (TDOA) of
the signal between microphone pairs. Consider a smart-room
provided with a set of N microphones from which we choose
M microphone pairs. Let x denote a R® position in space. Then
the time delay of arrival 7« ; ; of an hypothetical acoustic source
located at x between two microphones ¢, j with position m; and
mj 18:

X—m; || — || x—m;
o x| x|

ey

c
where c is the speed of sound in air.

The cross-correlation function is well-known as a measure
of the similarity between signals for any given time displace-
ment and ideally it should exhibit a prominent peak in corre-
spondence to the delay between the pair of signals [13]. A
commonly used weighting function in acoustic event localiza-
tion is the Phase Transform (PHAT), also known in the litera-
ture as crosspower-spectrum phase (CSP) technique [14], that
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Figure 2: Mean broadband GCC-PHAT-P measures of a human
talker in the horizontal plane.

is usually considered useful in reverberant conditions. It can

be expressed in terms of the inverse Fourier transform of the

estimated CPS (G, m; (f)) with the following equation,
Gy (f)

Ri;(1) = /:’O U(fhﬁ)mej%hdfv 2

and the estimation of the TDOA is as follows:
7i,; = argmax R;;(T) 3)

In practice, the frequency range used to compute R;;(7)
can be reduced to the speech-band to increase the accuracy [15],
employing the rectangular band-pass filter U (f1, f2) with uni-
tary value for frequencies f1 < |f| < f2, and zero otherwise.

3.2. SRP-PHAT algorithm

The contributions of each microphone pair can be combined to
derive a single estimation of the source position. However, in
the general case, the availability of multiple TDOA estimations
leads to a minimization of an over-determined and non-linear
error function. A very efficient approach is the SRP-PHAT or
Global Coherence Field introduced in [15], which also performs
performs very robustly in reverberant environments.

The basic operation of the SRP-PHAT algorithms consists
of exploring the 3-dimensional (3D) space, searching for the
maximum of the global contribution of the PHAT-weighted
cross-correlations from all the microphone pairs. The 3D room
space is quantized into a set of positions with typical separation
of 5-10 cm. The theoretical TDOA 74 ;,; from each exploration
position to each microphone pair are precomputed and stored.

The estimated acoustic source location is the position of the
quantized space that maximizes the contribution of the cross-
correlation of all microphone pairs:

X = argmax Z Rynym; (Tx,1,5)5 4)

*  ijes
where S is the set of microphone pairs. Then the TDOA for each
microphone pair 7% ;, ; is estimated using the obtained location.

4. GCC-PHAT based speaker orientation
4.1. GCC-PHAT-P

To investigate the usefulness of the GCC-PHAT Peak value (
GCC-PHAT-P) as an orientational clue, first the value of the
peak for different relative angles of the speaker to the micro-
phone pairs and its frequency behavior is analyzed. Using the
database recorded for this purpose described later, the informa-
tion regarding the distance of the speaker and its relative ori-
entation to every microphone pair is extracted from the ground
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Figure 3: magnitude of GCC-PHAT-P for 4 orientation angles
between speaker and microphone pair 0, 30, 60 and 90 degrees.

truth annotations. Then the GCC-PHAT cross-correlation func-
tion is computed for different frequency ranges using Eq. 2.

The mean value of the band filtered cross-correlation at
the delay 7% ;,; corresponding to the location of the speaker is
shown in Fig 3 for 4 different orientation angles and frequen-
cies. Experimental results show that signals from microphone
pairs placed directly in front of a speaker exhibit a higher co-
herence over the cross-spectrum than signals from microphones
placed outside the main radiation lobe, which are attenuated by
the head of the speaker and are more affected by noise and re-
verberation.

Fig. 3 reveals that the measures of the global peak of the
GCC-PHAT function if strongly affected by the orientation for
frequencies in the range between 2 kHz and 12kHz. Conse-
quently, the mean values of GCC-PHAT-P for in this frequency
band can effectively be used as a cue measure for orientation
estimation. The mean broadband GCC-PHAT-P measures of a
human talker in the horizontal plane is depicted in Fig. 2. The
obtained pattern has a similar shape to the one of speech radia-
tion diagram from Fig. 1.

4.2. Orientation angle estimation

In order to estimate the orientation of a speaker based on the
GCC-PHAT-based orientational measures we propose a simple
vectorial method similar to that described for the energy-based
approach [9]. The proposed technique first needs the position of
the active person to be known beforehand or estimated by means
of the SRP-PHAT or any other source localization method. In
this work, the localization step is performed by the SRP-PHAT
algorithm. Then, the vectors v,, from the speaker to the center
of each microphone pair p,, are computed, adjusting their mag-
nitude |v,| to the orientational measure of the microphone pair.
The weighted sum of the vectors formed by all the orientational
measures of each microphone pair is considered the estimated
head direction v sy, as follows:

N
Vsum = Z WnVn (5)
n=1

The estimated head orientation angle 6 is computed from
the x— and y—components of Vgym:
0= 2LVsum, 6)

where Zvs.m denotes the angle of the projection of vy, in
the xy-plane with the x-axis.

The purpose of the weights w,, is to normalize the magni-
tude of all microphone pairs enabling them to lie between the
range [—a, (1 — )] employing the Min-Max normalization:

[Val = [Vinin|

-, @)

Wy = —————————
|Vmaa:‘ - |Vmin‘
where vy, is the vector with the minimum magnitude from the
set of vy, and Va4 1s the vector with maximum magnitude.
This weighting models the fact that the microphone pairs
with lowest orientational cue value are probably behind the
speaker and by giving those pairs a negative value, its resulting
vector would help point to the correct direction. In our experi-
ments we obtained good results with o = 0.3.

5. Experimental setup
5.1. Database description

The testing database was collected in UPC smart-room. The
room dimensions in the x, y, z coordinates are 3966 x 5245
x 4000 mm, and its measured reverberation time is approxi-
mately 400 ms. The sensor network used by the speaker local-
ization and head orientation algorithms consists of 6 T-shaped
microphone clusters of 4 microphones covering the room.

Collected data consisted of a sequence of sentences uttered
by six male speakers at six different positions for eight orien-
tations in steps of about 45 degrees. Eight phonetically rich
sentences (of about 3.5 seconds length) were extracted from the
wall street journal (WSJ) database [16], one sentence for each
orientation. The speakers were split in groups of 2 speakers, and
each group had a different sequence of sentences, thus enabling
the possibility to analyze the impact of the sentence content on
the orientation estimation and also differences among speakers.

The speakers repeated each sentence twice at every location
and orientation, following his scheduled sequence of sentences.
Signals were sampled at 44.1 kHz. The total database consists
of about 32 minutes of audio.

Additionally, the performance of the proposed head orienta-
tion estimation algorithm was evaluated with the CLEAR head
pose database [17]. It consists of an extract of 3 seminars from
the data collected by the CHIL consortium for the CLEAR 2006
evaluation that was labeled for particular head pose evaluation
purposes. The seminars were recorded in a non-interactive in-
door scenario where a person was giving a talk, for a total of
approximately 15 min.

5.2. Evaluation metrics

Metrics and scoring of the systems has been done following
the common agreement of the CHIL consortium for head pose
evaluation. Three basic metrics are defined:

Pan Mean Average Error (PMAE) [degrees]: the precision of
the head orientation angle estimation.

Pan Correct Classification (PCC) [%]: the ability of the
system to correctly classify the head position within 8
classes spanning 45° each.

Pan Correct Classification within a Range (PCCR) [%]: the
ability of the system to correctly classify the head posi-
tion within 8 classes spanning 45° each, allowing a clas-
sification error of 1 adjacent class.

6. Results

Table 1 shows different results for the proposed GCC-PHAT-P
method varying the cut-off frequencies fi and f> in Eq. 2, eval-



uated with the UPC database. Best performance was obtained
with the frequency range 100 - 6000 Hz. However, for the
sake of computational complexity, in subsequent experiments
the same frequency range as the localization algorithm was em-
ployed, which is from 100 to 8000 Hz.

Table 1: PMAE for different results for the proposed GCC-
PHAT-P method varying the cut-off frequencies f1 and fs.

fo\fi 100Hz 500Hz 1kHz 2kHz 3kHz
6kHz 11.21° 12.68° 12.50° 12.44° 14.54°
8kHz  11.80° 14.46° 13.39° 14.53° 15.86°
10kHz 15.47° 17.62° 17.70° 18.02° 19.02°
12kHz  15.52° 17.12° 17.22° 17.71° 18.49°

The results obtained the proposed method are compared
with those from two alternative methods based on SRP-PHAT,
described in [9], and also compared with best results published
in the CLEAR Evaluation [18] involving video algorithms.

Table 2: Head pose orientation results for the 5 methods eval-
uated with the UPC database.

Method PMAE PCC PCCR
SRPPHAT-]  34.70° 37.75% 84.31%
SRPPHAT-F  35.58° 33.46% 83.84%
HLBR-B 57.83° 26.01% 60.48%
HLBR-V 58.72° 25.28% 59.03%
GCC-PHAT-P  11.80° 76.87% 99.46%

Table 2 and table 3 summarize the averaged results obtained
by the proposed method using both the new UPC database and
the CLEAR head pose database. The new SRP-PHAT-P tech-
nique for estimating the orientation of a speaker exhibits better
overall performance than the other state of the art acoustic meth-
ods and achieves a very similar performance to video algorithms
in the CLEAR head pose database.

Table 3: Head pose orientation results evaluated with CLEAR
head pose database.

Method PMAE PCC PCCR
SRPPHAT-J 44.68° 37.32% 73.38%
SRPPHAT-F 44.23°  37.71% 73.89%

Best video CLEAR 2006  33.56°  44.8% 86.6%
GCC-PHAT-P 32.52°  4831% 85.44%

7. Conclusions

The cross-correlation function between pairs of microphones is
studied as a basis for speaker orientation estimation, which is
stated as having a strong dependence with the speaker orienta-
tion and frequency. A two step algorithm is proposed for first es-
timating the position and then the speaker orientation based on
cross-correlation orientational cues. The proposed method per-
forms consistently better than the other audio techniques with
both databases, obtaining promising results in terms of accuracy
and robustness of the estimation very similar to those obtained
with video algorithms.
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