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Abstract

Modern GPUs have evolved into fully programmable
parallel stream multiprocessors. Due to the nature of the
graphic workloads, computer vision algorithms are in good
position to leverage the computing power of these devices.
An interesting problem that greatly benefits from paral-
lelism is face detection. This paper presents a highly op-
timized Haar-based face detector that works in real time
over high definition videos. The proposed kernel opera-
tions exploit both coarse and fine grain parallelism for per-
forming integral image computations and filter evaluations,
thus being beneficial not only for face detection but also for
other computer vision techniques. Compared to previous
implementations, the experiments show that our proposal
achieves a sustained throughput of 35 fps under 1080p res-
olutions using a sliding window with step of one pixel.

1. Introduction
In recent years, face detection and identification tech-

nology has experienced a huge leap in terms of improved
accuracy and throughput. Part of this success is due to the
fact that the semiconductor industry has been able to deliver
faster microprocessors clocked at higher frequencies. This
increase in raw performance for single-threaded applica-
tions also has its roots in the growing complexity of the mi-
croarchitectures of general purpose processors. Techniques
such as deep pipelining, out-of-order and superscalar exe-
cution, and simultaneous or speculative multithreading have
enabled sustained increases in both the instruction level par-
allelism and the issue width of these highly complex cores.

At the same time, computer vision algorithms have suc-
cessfully exploited the increase of serial performance, by
carrying out hundreds of billions of operations to match
specific patterns within an image. Applications ranging
from classic object recognition to advanced video analyt-
ics were made possible. Particularly, smart video surveil-
lance algorithms aim at analyzing 24/7 continuous video
broadcasted from multiple IP CCTV cameras, thus requir-

ing a high amount of computing power, especially when it is
required to meet specific latency and accuracy constraints.
From the perspective of latency, a video surveillance system
has to analyze real-time image sequences without missing
any video frame. In order to guarantee SLAs and trigger
the appropriate alarms, computer vision algorithms should
meet a tight deadline ensuring that all required computa-
tions can sustain a frame rate of at least 25 fps.

On the other hand, recent advances in CCD and active-
pixel CMOS sensors have substantially reduced the cost of
deploying 1080p HDTV cameras. By using high resolution
images, it is now possible to detect features of distant faces
in highly crowded environments (e.g. stadiums, airports or
train stations) and use such increased resolutions to effec-
tively improve face identification algorithms.

Unfortunately, it is not expected anymore to dramatically
increase the throughput of single-threaded object detectors
just by executing them in the latest available CPU. The so-
called power wall and the impossibility of clocking out-
of-order microarchitectures at ever-increasing frequencies
have been the main reasons for the major multicore shift
experienced by the CPU industry.

Unlike multicore CPUs, GPU microarchitectures do not
rely on big L2 and L3 caches for hiding latencies when ac-
cessing DRAM memories. They spend instead a large ex-
tension of the die area in ALUs rather than in caches, and
hide memory access latencies simply by overlapping them
with arithmetic computations from multiple threads. In or-
der to exploit these throughput-oriented architectures, the
programmer must explicitly expose data-level parallelism
by mapping kernel functions to a collection of data records
or streams.

In this work we present a massively parallel stream-
based implementation of a Haar-based face detector that
targets NVIDIA GPUs. The proposed parallel processing
pipeline is designed from scratch for detecting faces in real-
time in H.264 high definition 1080p video sequences, and
returning their precise location within the image for further
identification. Our implementation processes HDTV video
sequences at a sustained rate of 35 fps using hard runtime
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constraints (sliding windows with step of one pixel and 32
different scales).

This paper is structured as follows: Section 2 discusses
recent advances and state-of-the-art implementations of
low-latency face detection algorithms based on the frame-
work originally described by Viola and Jones [1]. Section 3
describes the proposed GPU-based parallel pipeline for per-
forming face detection. The optimized implementation of
this pipeline is described in two parts: Section 4 proposes
an implementation of the integral image computation based
on multiscan operations, and Section 5 discusses the paral-
lel implementation strategy followed for the Haar cascade
evaluation process. An intensive evaluation of these opti-
mizations is carried out in Section 6. To conclude, Section 7
draws some final conclusions and describes the future work.

2. Related work
There has been little work in the literature during the

last years about real-time face detection at HDTV resolu-
tions. Cho et al. [2] presented a FPGA-based face detection
system based on Haar classifiers capable of detecting faces
at 640×480 resolutions at 7.5 fps. Hefenbrock et al. [3]
proposed a stream-based multi-GPU implementation on 4
cards that achieved 15.2 fps. However, the integral image
computation was not parallelized, and Haar features were
accessed from the shared memory of each streaming multi-
processor (SM) and not from the constant memory, which
is specifically designed for broadcasting values to a thread
warp. Kong et al. [4] described another GPU-based imple-
mentation that offered a latency of 197 ms (0.5 fps) when
detecting 48 faces at 1280×1024 resolution. Herout et
al. [5] proposed a GPU-based face detector based on local
rank patterns as an alternative to the commonly used Haar
wavelets [6].

Finally, Sharma et al. [7] presented a working CUDA im-
plementation that achieved a peak throughput of 19 fps un-
der a resolution of 1280×960 pixels. They proposed a naive
parallel integral image kernel to perform both row-wise and
column-wise prefix sums, by fetching input data from the
off-chip texture memory cached in each SM. Unlike other
implementations, the Haar cascade evaluation was paral-
lelized using a fixed-size sliding window, and the input im-
ages were sequentially resized to deal with multiple scales.

In the present work we overcome the bottlenecks and
limitations of the parallel integral image computation used
by Sharma et al. [7]. We also propose a parallel algorithm
for evaluating Haar filters that fully exploits the underly-
ing microarchitecture of the NVIDIA GF100 core. The
experimental results show that our parallel face detection
framework beats in performance all implementations found
to date in the literature, achieving a sustained frame rate of
35 fps at a resolution of 1920×1080 while decoding H.264
video in real-time.

3. Proposed face detection pipeline
In order to implement face detection, we follow a par-

allelization strategy that tries to simultaneously maximize
GPU occupancy and minimize the amount of memory
transfers between CPU and GPU. In addition, since the
targeted GPU microarchitecture features a heterogeneous
cache memory hierarchy [8], the Haar feature set and the
image to be computed should be manually transferred to the
appropriate cache type to achieve the highest throughput.

As shown in Figure 1, the pipeline starts from a video
input. If the input is encoded using standard codecs, e.g.
MPEG2 or MPEG4-AVC/H.264, it is then possible to use
the NVCUVID API for decoding the video in the GPU [9].
This API exposes the on-die video decoder processor (VP)
to the programmer, and allows interoperability between the
hardware-decoded video frames and CUDA kernel compu-
tations.
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Figure 1. Proposed pipeline for parallel face detection

The following step after decoding the video frame is
computing the integral image Iint in parallel. At this point,
there are two possible implementations for the process H
that evaluates the cascade of Haar filters. The first alter-
native scales the sliding window and requires resizing each
filter accordingly, whereas the second one scales the image.
As it will be discussed in Section 5, the best option is rescal-
ing images instead of filters. Each newly scaled image Is is
filtered to avoid aliasing, e.g. by using the bilinear filtering
fixed-functions BF available in the texturing units of the
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Figure 2. Serial (left) vs. concurrent (right) kernel execution

GPU, and its corresponding integral image is recomputed
for each scale.

The last step of the pipeline returns the coordinates of de-
tected faces to the CPU for further processing. The detected
faces are bounded using a CUDA kernel FB , and these re-
sults are bypassed to the conventional OpenGL pipeline us-
ing a pixel buffer object to display the results.

All kernel computations in the GPU exploit both coarse-
grain and fine-grain parallelism. Coarse-grain parallelism
is achieved by simultaneously launching and executing the
same kernel operation for each scaled image from the same
CUDA context. Additionally, fine-grain parallelism is also
exploited at thread-level within each CUDA kernel. Since
the Fermi microarchitecture supports concurrent kernel ex-
ecution [8], the occupancy of GPU resources is maximized
even for those kernels dealing with small scales, by execut-
ing them in parallel as seen in Figure 2.

4. Parallel integral image computation
Computing integral images is an expensive task within

the face detection process. There exists literature on how
to optimize this task via parallelization under both stream-
based and multi-core processors [10, 11, 12]. However,
most existing work relies on the observation made by Mes-
son et al. [11] that integral images can be computed us-
ing standard exclusive prefix sum operations followed by
matrix transpositions. Since this algorithm is meant to be
executed on GPUs, it is possible to preserve data local-
ity in on-die caches by performing row-wise prefix-sums
and two matrix transpositions, as opposed to the row-wise
and column-wise prefix sum operations initially proposed
by Sharma et al. [7].

The prefix sum or scan is a data-parallel primitive ap-
plied to a given stream, in which each element is generated
by summing the elements up to its index. A naive parallel
implementation computes the prefix-sum in log2 n steps, by
first summing in parallel all pairs of contiguous elements to
produce n/2 additions, and recursively summing the pro-
duced pairs until a final single sum remains [13]. This
naive implementation performs O(n log2 n) total additions,
whereas a single-threaded CPU implementation would only
require O(n) operations.

For better exploiting the underlying GPU microarchitec-
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Figure 3. Divide-and-conquer approach for the parallel prefix sum
(scan) operation and the underlying GPU microarchitecture

ture, we take an additional effort and follow a divide-and-
conquer hierarchical approach based on the Hillis-Steele al-
gorithm [14, 15], which implements the scan at different
granularities. In this implementation, input data is fetched
in parallel from the GPU DRAM and then stored in the on-
die shared memory of each SM before starting any compu-
tation.

As Figure 3 shows, the high-level block scan operation
is composed of several warp scan primitives. The purpose
of this block-wise operation is to compute the scan across
a block of threads. A grid of intra-block primitives (grid
scan) is then used to finish the prefix sum computation of a
stream of arbitrary length. In order to exploit coarse-grain
parallelism at row level, the integral image computation re-
lies on the multiscan kernel operation. This operation car-
ries out the scan in parallel for each row of the input image.

At the lowest level, a warp scan primitive computes the
prefix sum only for the threads referenced within the warp.
As depicted in Figure 4, the warp scan primitive performs
the prefix sum operation in parallel for an input vector of 32
elements in log2 32 steps. For each step, a subset of threads
in the warp performs a partial sum. At the end of the 5th
step, the output of the algorithm will be the prefix sum for
the 32-element vector.

In the Fermi core, SIMT instructions perform the same
computation across a warp or group of 32 threads and si-
multaneously store the results in registers without need-
ing additional thread barrier instructions [8]. For this rea-
son, each step of the warp scan primitive can be imple-
mented using a sequence of ld.shared.u32, add.u32
and st.shared.u32 SIMT instructions. The parallel ac-
cess pattern depicted in Figure 4 ensures memory coalesc-
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Figure 4. Parallel warp scan primitive for a 32-element input vector x

ing, thus maximizing both bandwidth and throughput.
The integral image Iint is obtained by subsequently per-

forming a multiscan operation, a parallel matrix transposi-
tion, a second multiscan and a second transposition:

Iint = multiscan
(
multiscan (I)

T
)T

Transposing the matrices is necessary to avoid column-
wise scanning, so that data locality is better exploited when
accessing the shared memory. Memory coalescing and bulk
transfers are required to achieve the maximum bandwidth
for the GPU, so a natural way of transposing matrices is to
divide them into equally-sized blocks and to copy data from
the off-chip DRAM to the on-die shared memories. This in-
volves using a barrier instruction after data is transferred to
the shared memory of each SM. Synchronization is required
to guarantee that all threads constituting the CUDA block
start with the transposition immediately after all memory
transfers have concluded.

Generally, the input matrix is not a multiple of the
warp width. To solve this issue, before transferring mem-
ory from the CPU address space to the GPU, the matrix
is zero-padded until becoming square. Even though this
padding process causes additional memory transfers, the
final throughput of the transposition will be much better,
since all accesses will be properly coalesced and aligned.

5. Parallel Haar cascade evaluation
Once the integral image of a given frame is computed,

the cascade of Haar filters has to be evaluated. This step is
the most resource-intensive part of the face detection algo-
rithm, since it involves hundreds of billions of operations
per image frame in HD video sequences.

There are two alternative parallelization strategies to
tackle scaling during filter evaluation. The first one is

to parallelize the serial algorithm proposed by Viola and
Jones [1], which consists of resizing the filters to the desired
scanning resolution. Unfortunately, this technique is ineffi-
cient when implemented in CUDA. Since all filters must
be scaled up to the size of the sliding window, the occu-
pancy of the CUDA cores will be extremely low if each
thread evaluates the Haar filter cascade for a given sliding
window position and resolution. As shown in the follow-
ing equation, the number of potential simultaneous threads
Nthreads quadratically decreases as the size of the sliding
window W×W increases by a scale factor:

Nthreads =

⌈
Iwidth · Iheight
scale2 ·W 2

⌉
Therefore, when detecting faces of 96×96 pixels in a

1920×1080 image, there are only 225 threads competing
for the hardware resources. This amount of threads is
clearly insufficient for keeping the 512 cores of the GF100
microarchitecture busy, especially when threads stall due to
data dependencies or pending load instructions. The situa-
tion is even worse for higher resolutions of faces.

Hence, the main objective is to create as many threads
evaluating the cascade as possible. In order to meet this
goal, we propose using small fixed-sized sliding windows
and scaling instead the input image. As a consequence, in-
tegral images need to be computed for each newly scaled
image, whereas the traditional algorithm computes it once.

In order to obtain the highest performance during the
evaluation of the cascade, the integral image data should be
moved to the on-die shared memory before any computing-
intensive operation starts. The best way to do it is using
the divide-and-conquer approach, where each thread from
the cooperative array transfers a portion of image from the
global memory to the shared memory of the corresponding
SM. The size of memory chunks has to be at least four times
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Figure 5. Evaluation area considered by a thread in a CUDA block

larger than that of the sliding window. This is because the
threads of a block (i, j) in the grid have to bring pixels from
contiguous blocks to the shared memory in order to evaluate
the sliding window, see Figure 5.

After these memory transfers have been completed, the
filters of the Haar cascade need to be evaluated. This evalua-
tion is both a memory and an arithmetic intensive operation.
Therefore, the right approach should involve moving the
Haar features to the on-die shared memory. Unfortunately,
this is unfeasible for two reasons. First, the selected fea-
ture set [16] has a size of 106 KB and the available shared
memory in a SM is 48 KB. Second, all warp threads will
stall, since each thread will try to access the same memory
address (e.g. the first filter of the first stage), thus produc-
ing bank conflicts. To deal with these situations, the GF100
microarchitecture provides the constant memory, which is
specifically designed for broadcasting values for all warp
threads that simultaneously access the same address.

Unlike the shared memory, the constant memory is read-
only and must be allocated and initialized before launching
a kernel. Although the aggregated size of the constant mem-
ory is 128 KB (8 KB per SM), the CUDA programming
model restricts the available size to 64 KB, so the feature
set must be stored compressed. Since thresholds are en-
coded using double precision floating-point numbers, they
can be re-encoded in 32 bits at the cost of slightly losing
precision. Similarly, not all the bits required for the coordi-
nates, dimensions and weight values are significant. Given
that the training images used for the cascade had a size of
24×24 pixels, two 16-bit unsigned integers suffice for en-
coding a feature.

6. Experimental results

In order to evaluate the performance of the previously
described parallel algorithms, multiple execution tests were
performed in the same computer. The selected platform fea-
tured an Intel Core i5-760 2.8 GHz, quad-core CPU and an

NVIDIA GTX 470 graphics card.
All GPU applications were compiled for the CUDA

Toolkit 4.0 with the -O3 flag and targeted the sm 20 ar-
chitecture. The underlying OS was powered by the Linux
Kernel 2.6.35 and compiled for the x86-64 architecture. On
the other hand, GCC v.4.4.5 was used for linking the fi-
nal application and for building the CPU tests. It should
be noted that all GPU benchmarks were performed without
considering the time spent on memory transfers between
the CPU and the GPU. This assumption is valid since the
final GPU-based face detector will start performing compu-
tations only once the image frame is available in the off-chip
GPU DRAM memory.

The cascade used for the Haar evaluation process was the
frontal feature set developed by Lienhart et al. [16] and dis-
tributed in the OpenCV framework. It has 2913 filters and
is organized into 25 stages. Finally, the size of the training
images was 24×24 pixels.

6.1. Integral image

In order to evaluate our parallel integral image imple-
mentation, we executed the multiscan algorithm for differ-
ent image sizes in both CPU and GPU. The CPU imple-
mentation was a single-threaded application that carried out
a recursive scan in O(n) steps for an n×n matrix whereas
the GPU implementation was the same as described in Sec-
tion 4. Since each row involves O(log2 n) steps, the GPU
implementation is asymptotically fitted by O(n log2 n). On
the other hand, input images were matrices randomly popu-
lated with unsigned 32-bit integers that ranged from 30×30
to 104× 104 pixels.

As depicted in Figure 6, the GPU multiscan scales well
with the image size. For a 100 megapixel image it is exe-
cuted in only 43 ms, 66 times faster than the CPU version.

Although the GPU algorithm scales well with the size
of the input image, it is slower than the CPU version for
small images. This effect can be clearly seen in Figure 7
where the execution time for the GPU is constant for images
smaller or equal than 100×100 pixels. The reason for this
behavior is related to the overhead produced by the CUDA
kernel launching process. If the image to be processed has
few elements, it is not possible to hide the latencies of ker-
nel launches with arithmetic computations. As a result, the
CPU will beat the GPU for images smaller than 60×60 pix-
els where the time spent by the CUDA runtime for allo-
cating all required resources and internal data structures is
higher than the time spent by the CUDA cores for comput-
ing the data stream.

The performance of the multiscan for non-square n×m
matrices was also analyzed. Since kernel launches are ex-
pensive operations, in theory a multiscan of a 10000×100
matrix would yield a higher execution time than that of a
100×10000. Also, the first approach requires more ker-
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Figure 6. Execution time of the multiscan operation

nel launches than the second and computes less work in
each kernel. As shown in Table 1, this does not behave
as expected. The execution time grows slightly faster if
the column size (m) is kept constant and the number of
rows (n) increased, rather than the opposite, but only while
m ≤ 1000 and n ≤ 10000. This effect is amplified as n
(kernel launches) grows and may be related to the imple-
mentation of the CUDA runtime.

Rows Columns (m)
(n) 1 10 100 1000 10000
1 0.006860 0.006820 0.006780 0.006740 0.021770
10 0.006970 0.006880 0.006860 0.007010 0.024120

100 0.006900 0.007400 0.007290 0.014300 0.192690
1000 0.045060 0.049580 0.051780 0.248030 3.874300

10000 0.421470 0.47058 0.507210 2.604200 40.690800

Table 1. Multiscan execution time (ms) for the GPU

In addition to the multiscan, the matrix transposition was
also evaluated. Due to the nature of our GPU parallel im-
plementation, the optimal width of the CUDA cooperative
thread array must be experimentally determined for achiev-
ing the maximum performance. Since the purposed face
detection application should work at HDTV resolutions, we
determined the block size yielding the best results for res-
olutions ranging from 1280×720 up to 2048×2048 pixels.
Furthermore, the transposition algorithm was deliberately
modified with the purpose of analyzing the effect of both co-
alesced and uncoalesced memory accesses under the GF100
microarchitecture.

As Figure 8 shows, the lowest execution time is obtained
for blocks of 16×16 threads when performing coalesced
memory accesses. The reason for this is related to the num-
ber of bank ports available in the on-die shared memory.

Finally, the parallel algorithms for multiscan and trans-
position are sequentially combined to obtain the n×m inte-
gral image. The performance of the whole process has been
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compared against a sequential O(n ·m) CPU implementa-
tion, which does not perform any scan or transposition for
computing the integral image. It is worth noting that se-
quentially adding each element of the matrix while keeping
the accumulated sum in a variable avoids unnecessary loop
iterations. Both implementations were tested with padded
images ranging from 256×256 up to 8192×8192 pixels.

The obtained speed up for the GPU is not as high as
expected if we take into account the results of each inter-
mediate step of the parallel implementation (see Figure 9).
On average, the GPU implementation is 2.5 times faster
than the CPU. However, this does not happen with images
smaller than 256×256 pixels; at these low resolutions, the
CPU is on average 15% faster than the GPU. Again, the
reason behind this behavior is that when the random values
of the small input matrices are created from CPU registers,
they may never leave the on-die L2 and L3 caches, and they
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even fit in the L1 data cache. Nevertheless, the approach of
caching the complete working set is not sustainable for high
resolutions and even though the CPU still benefits from ag-
gressive memory prefetching, the GPU speed up grows with
the size of the input image.
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Figure 9. Integral image execution time

To conclude, the average latency obtained for comput-
ing the integral image at 1920×1080 pixels in the GPU was
2.3 ms where 0.61 ms were spent for each multiscan opera-
tion and 0.54 ms for each matrix transposition.

6.2. Optimal block size for filter evaluation

Prior to the performance evaluation of the parallelized
Haar cascade filtering, the optimal block size has to be esti-
mated. This size is also used for computing the dimensions
of the memory chunks that each thread has to bring to the
shared memory.

In this way, the occupancy of the GPU is computed by an
analytical model that takes into account register and shared
memory usage and the number of threads that constitute a
block for a given kernel. By following this approach, we
experimentally determined the GPU occupancy for the Haar
evaluation kernel. As Figure 10 depicts, there are multiple
combinations that achieve the maximum occupancy for this
code. However, since the sliding window should be greater
or equal than 24×24 elements and square, the only alterna-
tive is to use 28 · 28 = 784 threads per block.

6.3. Face detection

Once the optimal block size was selected, several bench-
marks were conducted in order to characterize the latency of
the face detection algorithm. These tests were executed in
the same computer as that used in Section 6.1 and combine
both the integral image computation and the Haar cascade
process. In addition, the final algorithm carries out face de-
tection by progressively downscaling the input image frame
32 times, and simultaneously launching the CUDA kernels
for each one of the 32 considered scales in parallel.
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We were not able to find any publicly available databases
of high definition videos for evaluating the performance of
the final face detection system. The considered benchmarks
are instead a collection of high definition H.264 movie trail-
ers and music clips carefully selected for stressing the sys-
tem, i.e. containing a large number of faces. All these
videos were downloaded from the YouTube website and
feature a resolution of 1920×1080 pixels.

Figure 11 shows the face detection execution time at
each frame of two selected videos presenting different char-
acteristics within the chosen collection. The first one
(Shakira – Waka Waka) features panoramic views in highly
crowded soccer stadiums, reaching hundreds of faces in
some frames. On the other hand, the second video (Andreea
Balan – Trippin’) peaks at 6 simultaneous faces at most.
Both videos present very frequent transitions and parts with
sudden motion, and the scales of faces roughly range from
30 up to 1000 pixels vertically. Even though the face detec-
tion slows down the video playback and violates the 40 ms
deadline (25 fps) on a few occasions, most of the time the
obtained throughput is close to 40 fps.

The performance of the algorithm regarding face de-
tection is exactly equivalent to that shown by the detector
in [16] when specifying the same tuning parameters. That
includes a step size of one pixel for the sliding window, and
a total of 32 scale reductions using a scale factor of 1.1.

7. Conclusions and future work
We have presented a highly optimized parallel imple-

mentation of a Haar-based face detector, which analyzes
high-definition 1080p video at a sustained rate of 35 fps for
generic sequences containing multiple faces. Our face de-
tection implementation is, to the best of our knowledge, the
first one processing real-time HDTV video with a sliding
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Figure 11. Execution time for two different HD music videos

window of dense step size (1 pixel).
The efficient implementation of the integral image

paradigm via row multiscan does not restrict to Viola-Jones
face detection. It directly benefits a wide variety of com-
puter vision techniques, including Randomized Decision
Trees and Forests and methods based on more complex de-
scriptors like HOG and SURF. Moreover, we proved that the
combination of a smart usage of the on-die caches, fixed-
size sliding windows and image scaling based on texture
fetches maximize the GPU occupancy, thus increasing the
evaluation throughput of Haar filter cascades.

Further steps include an efficient implementation of the
non-maxima suppression process. In addition, a previous
stage for image enhancement is required in order to over-
come challenging lighting conditions.
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