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The automatic estimation of age from face images is increasingly gaining attention, as it facilitates applica-

tions including advanced video surveillance, demographic statistics collection, customer profiling, or search

optimization in large databases. Nevertheless, it becomes challenging to estimate age from uncontrollable en-

vironments, with insufficient and incomplete training data, dealing with strong person-specificity and high

within-range variance. These difficulties have been recently addressed with complex and strongly hand-

crafted descriptors, difficult to replicate and compare. This paper presents two novel approaches: first, a

simple yet effective fusion of descriptors based on texture and local appearance; and second, a deep learning

scheme for accurate age estimation. These methods have been evaluated under a diversity of settings, and the

extensive experiments carried out on two large databases (MORPH and FRGC) demonstrate state-of-the-art

results over previous work.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

Estimating age from images has been historically one of the most

hallenging problems within the field of facial analysis. Some of

he reasons are the uncontrollable nature of the aging process, the

trong specificity to individual traits [31], high variance of observa-

ions within the same age range, camouflage due to beards, mous-

ache, glasses and makeup (this latter specifically used to alter the

erceived age), and the difficulty to gather complete and sufficient

raining data [7].

As in most image recognition tasks, a large and representative

mount of data/images is required to successfully train the classifier.

oveover, in the case of supervised classifiers, data/images need to

e annotated, with real age in our case. In the past, however, avail-

ble databases were limited and strongly skewed. This is especially

isadvantageous for video surveillance and forensics, where un-

nown subjects are common and often not collaborative. Fortunately,

he availability of large databases like MORPH [26] and FRGC [25] of-

ers opportunities to progress in the field. However, training data sets

an never represent the whole population fully, and methods with

ubstantial robustness need to be developed in order to exploit large

atabases.
✩ This paper has been recommended for acceptance by Paulo Lobato Correia.
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The inherent difficulties in the facial age estimation problem, such

s limited imagery, challenging subject variability, or subtle visual age

atterns, have derived research in the field into building particularly

omplex feature extraction schemes. The most typical ones consist

f either hand-tuned multi-level filter banks [7,13,14], that intend to

mulate the behavior of primary visual cortex cells, or fine-grained

acial meshes to accomplish precise alignment through dozens of fa-

ial landmarks [2,8,18]. In any case, the resulting extraction schemes

re difficult to replicate, and the high-dimensional visual descriptors

n many cases take considerable time to be computed.

This paper addresses these issues from a very practical per-

pective: given the above-mentioned limitations of the existing ap-

roaches, none of which can fully handle all the issues, we aim at

roposing two possible orthogonal ways. The first one aims at simpli-

ying the estimation process by avoiding hand-crafted features, while

roposing a simple yet effective fusion of well-known descriptors.

y carefully selecting the features to fuse we can ideally borrow the

est from all of them. On the other hand, previously hand-crafted and

omplex schemes for extracting visual features are progressively be-

ng replaced by deep learning procedures, which automatically train

ayered network architectures to tackle a defined problem. To the best

f our knowledge, this paper conducts the first thorough evaluation

f a deep learning framework for estimating age from face images.

With these premises, the title of this paper contains a pun: the

ord “deep” has a twofold meaning, referring both to the thorough

deep) analysis of commonly used local visual descriptors and to the

roposal of deep learning approaches, in order to investigate their
is on age estimation, Pattern Recognition Letters (2015),
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utility towards the automatic facial age estimation problem. Based on

the limitations of existing proposals to face age estimation, the main

contributions are stated next:

1. We extensively review effective descriptors based on texture and

appearance, and show that their fusion improves over complex,

state-of-the-art feature extraction schemes. Even though no new

descriptors are proposed, their comprehensive evaluation and the

demonstration of the superior performance achievable by fusing

some of these (orthogonal) features, represent interesting results

for the scientific community.

2. We investigate learning schemes to automatically train deep neu-

ral networks for age estimation. As mentioned above, we first

conduct thorough evaluation of deep learning for age estimation.

Deep learning has been proposed in the past and proved to be a vi-

able and effective classifier for several applications. However, its

performance for age estimation was still questionable, given the

high variability and limited data available.

3. The proposed methods are exhaustively evaluated over two large

databases, regarding optimal parameters and regularization. Both

methods showed state-of-the-art results, despite the use of a sim-

ple eye alignment as preprocessing.

The paper is structured as follows. Next section gathers previous

work regarding facial age estimation. Section 3 reviews the proposed

candidate descriptors, along with the chosen classification scheme,

and comments on the investigated deep learning scheme. Evalua-

tion for both methods is presented out in Section 4, first reviewing

available age-annotated large databases, and then describing the ex-

periments carried out over fused local descriptors and deep neural

networks. Finally, Section 5 summarizes the results and draws some

conclusions.

2. Related work

Initial attention on automatic age estimation from images dated

back to the early 2000s [18,19,21]. However, research in the field

has been experiencing a renewed interest from 2006 on, since the

availability of large databases like MORPH-Album 2 [26], which in-

creased by 55 × the amount of real age-annotated data compared to

databases at that time. This database has been consistently evaluated

in recent works through different feature extraction and classification

schemes.

2.1. Feature extraction scheme

In age estimation from images, typically the first phase after pre-

processing is to extract visual features which need to be (1) discrimi-

native among different classes, (2) robust within the same class, and

(3) with a minimal dimensionality. One class of methods relies on

flexible shape and appearance models such as ASM (Active Shape

Model) and AAM (Active Appearance Model) to model aging patterns

[2,7,8,18]. Such statistical models capture the main modes of variation

in shape and intensity observed in a set of faces, and allow to encode

face signatures based on such characterizations.

Other methods extract a set of visual features which are then fed

into the classifier to estimate the age. For instance, Bio-Inspired Fea-

tures (BIF) [27] and its derivations have consistently been used for

age estimation in the last years [7,14]. These feed-forward models in-

tertwine a number of convolutional and pooling layers. First, an in-

put image is mapped to a higher-dimensional space by convolving it

with a bank of multi-scale and multi-orientation Gabor filters. Later, a

pooling step downscales the results with a non-linear reduction, typi-

cally a MAX or STD operation, progressively encoding the results into

a vector signature. In [13], the authors carefully design a two-layer

simplification of this model for age estimation by manually setting
Please cite this article as: I. Huerta et al., A deep analys
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he number of bands and orientations for convolution and pooling.

uch features are also used in their posterior works, e.g. [10–12].

Features extracted from local neighborhoods have been used for

he purpose of age estimation, for example in [3,9,33]. In [31], LBP

istogram features are combined with principal components of BIF,

hape and textural features of AAM, and PCA projection of the origi-

al image pixels. Independent HOG features have been used for age

stimation in [5,16].

.2. Classification scheme

With regards to the learning algorithm, several approaches have

een proposed, including, among others, Support Vector Machines/

egressors [2,13,14,31], neural networks [18] and their variant of

onditional Probability Neural Network [7], Random Forests [22],

nd projection techniques such as Partial Least Squares (PLS) and

anonical Correlation Analysis (CCA), along with their regularized

nd kernelized versions [10–12]. An extensive comparison of these

lassification schemes for age estimation has been reported [5,16],

nd the advantageousness of CCA was demonstrated over others,

oth regarding accuracy and efficiency.

For this reason, specific attention must be given to the CCA

echnique. The PLS and CCA subspace learning algorithms were orig-

nally conceived to model the compatibility between two multidi-

ensional variables. PLS uses latent variables to learn a new space

n which such variables have maximum correlation, whereas CCA

nds basis vectors such that the projections of the two variables us-

ng these vectors are maximally correlated to each other. Both tech-

iques have been adapted for label regression. To the best of our

nowledge, the best current result over MORPH is achieved by com-

ining BIF features with kernel CCA [11], although in that case the

ize of training folds is limited to 10 K samples due to computational

imitations.

.3. Deep learning

Recently, convolutional networks and deep learning schemes have

een successfully employed for many tasks related to facial analysis,

ncluding face detection, face alignment [28], face verification [29],

nd demographic estimation [32]. This last work actually exploits age

nd gender cues in order to address face recognition, whereas we

pecifically focus on analyzing and evaluating convolutional network

rchitectures for age estimation. The basic methodology is generally

ommon to all, i.e., combining a number of convolutional, pooling and

ully or partially connected neuron layers, with variations in the or-

er, repetition and connectivity of the layers. Nonetheless, the partic-

lar choice of parameters, which are typically shared across layers, is

he key to their success.

One of the main contributions of this paper is the proposal of a

ovel combination of well-known local descriptors capturing texture

nd contour cues for the purpose of facial age estimation. The differ-

nt nature of these features allows the exploitation of the benefits of

ach of them, bringing to performance which are superior than in the

ase of them applied separately. Another contribution is the evalua-

ion of deep learning frameworks to the problem of age estimation. In

his field, to the best of our knowledge, approaches based on local fea-

ures and deep learning have never been compared to each other un-

er the same experimental settings, and across several databases. Our

xperiments demonstrate a comparable performance of both propos-

ls with respect to state-of-the-art results provided by complex and

ne-tuned feature extraction schemes such as BIF [12]. Moreover, for

he sake of simplicity and efficiency, a simple eye alignment opera-

ion is carried out through similarity transformation, as opposed to

recise alignment approaches typically fitting active shape and ap-

earance models with tens of facial landmarks.
is on age estimation, Pattern Recognition Letters (2015),
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Fig. 1. General view of the two methodologies presented in this paper.
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. Methodology

We present two approaches, one based on local features and their

ombination, and the other exploiting deep learning. Both method-

logies employ the same basic preprocessing, described next. A

lobal view of the methodology is presented in Fig. 1.

.1. Preprocessing

The facial region of each image has been detected with the face

etector described in [24]. Differently from other methods which rely

n tens of facial landmarks for accurate alignment (e.g., ASM and

AM), we exploit the relative alignment invariance of local descrip-

ors based on concatenated cell histograms to work with simple eye-

ligned images. The fiducial markers corresponding to the eye centers

ave been obtained using the convolutional neural network for face

lignment presented in [28]. The aligned version of each detected

ace is obtained by a non-reflective similarity image transformation

hat yields an optimal least-square correspondence between the eye

enters and the target locations, that have been symmetrically placed

t 25% and 75% of the alignment template. Unlike previous works like

11], which use input images of 60 × 60 pixels, our aligned image are

esized to only 50 × 50.

.2. Descriptors

The choice of visual features to be extracted from aligned im-

ges plays a fundamental role on the resulting estimation accuracy.

n this paper, we have selected a number of significant local invari-

nt descriptors that have been useful for image matching and object

ecognition in the past due to their expressiveness, fast computation,

ompactness, and invariance to misalignment and monotonic illumi-

ation changes. They include local appearance descriptors as HOG

nd texture descriptors as LBP and SURF.

.2.1. Histograms of Oriented Gradients (HOG)

HOG [4] have largely been used as robust visual descriptors in

any computer vision applications related to object detection and

ecognition. The image region is divided into Cx × Cy grid cells. A his-

ogram of orientations is assigned to each cell, in which every bin

ccounts for an evenly split sector of either the [0, π ] or [−π,π ] do-

ain (for unsigned and signed versions, respectively). At each pixel

ocation, the gradient magnitude and orientation is computed, and
Please cite this article as: I. Huerta et al., A deep analys
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hat pixel increments the assigned orientation bin of its correspon-

ent cell by its gradient magnitude. Cell histograms are concatenated

o provide the final descriptor. We use HOG×S
C,B

to denote C × C square

rids (where C = Cx = Cy) and B orientation bins, at S different scales.

.2.2. Local Binary Patterns (LBP)

LBP [23] have been long used as a textural descriptor for image

lassification, and more recently, variations of the original proposal

ave provided state-of-the-art results in fields like face and object

ecognition. The original operator describes every pixel in the image

y thresholding its surrounding 3 × 3-neighborhood with its inten-

ity value, and concatenating the 8 boolean tests as a binary number.

o build an LBP compact descriptor, a histogram is computed over the

ltered result, in which each bin corresponds to a LBP code. Another

ypical extension reduces the dimensionality of the descriptor by as-

igning all non-uniform codes to a single bin, whereas uniform codes

re defined as those having not more than 2 bitwise transitions from

to 1 or vice versa (e.g., 00111000, versus non-uniform 01001101).

n LBP descriptor of generic neighborhood size P and radius R using

niform patterns at S scales is referred as LBPu2×S
P,R , e.g. LBPu2×1

8,2 .

.2.3. Speeded-Up Robust Features (SURF)

SURF [1] is an interest point detector and descriptor that is par-

icularly invariant to scale and rotation. It has commonly been used

n image matching and object recognition as a faster and comparable

lternative to SIFT. In our case, we concentrate on the upright ver-

ion of the technique (U-SURF). The square image region to describe

s partitioned into 4 × 4 subregions. Horizontal and vertical wavelet

esponses dx and dy are computed and weighted with a Gaussian. The

um of these responses and their absolute values are stored, generat-

ng a 4-dimensional vector (�dx, �dy, �|dx|, �|dy|) for each subre-

ion, and these are concatenated to form the final 64-dimensional de-

criptor of the image region, SURF64. A common extension consists of

oubling the number of features, by separately computing the sums

f dx and |dx| for dy < 0 and dy ≥ 0, and equally for dy given the sign

f dx, thus yielding SURF128. We will use the notation SURF×S
D

to refer

o the concatenation of D-dimensional SURF descriptors at S different

cales.

As gradient information is used to describe image content by most

escriptors, we have included raw magnitude gradient images (δI :=
( δI
δx

)2 + ( δI
δy

)2) as a baseline in our experiments for the evaluation

f the proposed descriptors.
is on age estimation, Pattern Recognition Letters (2015),
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Table 1

Description of popular databases for age estimation. Our evaluation considers those in bold.

Database Reference Samples Subjects Comments

PAL [21] 580 580 Limited number of samples

FG-NET [19] 1002 82 Limited number of samples and subjects

GROUPS [6] 28,231 28,231 Ages discretized into seven age intervals

FRGC v2.0 [25] 44,278 568 Large database; many samples per subjects

MORPH-II [26] 55,134 13,618 Large database; high diversity
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3.3. Classification

From the wide variety of learning schemes presented in the litera-

ture on facial age estimation, Canonical Correlation Analysis (CCA) and

its derivations have recently obtained state-of-the-art results in chal-

lenging large databases such as MORPH [12]. This projection tech-

nique involves low computational effort and unprecedented accuracy

in the field, for which we use it as our chosen regression learning al-

gorithm. CCA is posed as the problem of relating data X to labels Y by

finding basis vectors wx and wy, such that the projections of the two

variables on their respective basis vectors maximize the correlation

coefficient

ρ = wx
T XYT wy√

(wx
T XXT wx)(wy

T YYT wy)
, (1)

or, equivalently, finding maxwx,wy wx
T XYT wy subject to the scaling

wx
TXXTwx=1 and wy

TYYTwy=1. For age estimation, the data matrix

X is M × N and the label matrix Y is M × 1, being M the number of

examples and N the dimension of the descriptor. Hence, since Y be-

comes a vector, the vector wy turns to be a simple scaling factor, so

a least squares fitting suffices to relate labels Y to the projected data

features wx
TX. Thus, only wx (of size M × 1) needs to be computed,

by solving the following generalized eigenvalue problem:

XYT (YYT +y I)−1YXT wx = λ(XXT + I)wx (2)

When projecting through the solution wx, the dimensionality of data

features is reduced to one dimension per output (a single numerical

value in our case), so the aforementioned label fitting simply consists

on finding the scalar value that optimally adapts the projected val-

ues to the ground truth age, in the least-squares sense. The described

procedure can be stabilized through regularization, by modifying the

eigenvalue problem as follows:

XYT ((1 − γy)YYT + γyI)−1YXT wx = λ((1 − γx)XXT + γxI)wx (3)

Regularization terms γ x, γ y ∈ [0, 1] have been included in Eq. 3

to prevent overfitting. Although CCA also admits extension to a ker-

nelized version, kCCA, in that case covariance matrices become com-

putationally intractable over 10 K samples. In practice, regularized

CCA (rCCA) works comparably to kCCA [11], it is much less compu-

tationally demanding, and will allow us to reproduce the same exact

validation schemes than other algorithms over large databases.

3.4. Deep learning

Neural network formulations have regained remarkable popular-

ity in the computer vision and machine learning communities, in

the form of deep learning schemes. This is explained by a number

of reasons, namely the availability of larger datasets to be exploited

automatically by these schemes, and the recent availability of more

efficient hardware devoted to scalable computation.

Large datasets are crucial for generalizing computer vision so-

lutions to non-constrained settings, due to the multiple sources of

variability, e.g. view, illumination, or occlusion. Previously popular

machine learning techniques such as support vector machines or

subspace learning methods (PCA, LDA, ICA, CCA) become seriously

limited when dealing with large training sets. For instance, we have
Please cite this article as: I. Huerta et al., A deep analys
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entioned that kCCA can work in practice up to 10 K training sam-

les [11], whereas large volumes of data are actually recommended

r even required for conducting deep learning. Moreover, deep learn-

ng frameworks are especially useful when the problem involves the

xploitation of non-trivial features, due to the fact that the feature

xtraction and classification steps are jointly optimized during the

earning process. The resulting network internally extracts suitable

eatures for minimizing an objective cost function, hence crafting ad-

quate features for better tacking the problem.

Following the success of recent works on deep learning for facial

nalysis, we incorporate types of layers that are devoted to learn the

ppropriate features for the problem, followed by layers that serve

or interrelating the information globally and conducting the regres-

ion or classification process. The first type typically includes convo-

utional and pooling layers, whereas the second type is represented

y locally or fully connected neurons. For many problems, it is best to

epeat the first group of layers a number of times, in order to extract

eatures of progressively higher order, from edges and contours to

lobs and textures. The particular choice of layer-specific parameters

e.g. filter sizes and number), as well as those related to the learning

rocess itself (e.g. learning rates, weight regularization) is described

n the following section.

. Experimental results

.1. Age databases

Due to the nature of the age estimation problem, there is a re-

tricted number of publicly available databases providing a substan-

ial number of face images labeled with accurate age information.

able 1 shows the summary of the existing databases with main ref-

rence, number of samples, number of subjects, and comments.

From Table 1, it is quite clear that older datasets like PAL and FG-

ET are composed by a negligible number of samples when com-

ared to the other newer datasets. GROUPS, instead, contains a good

umber of samples. However, age annotations are discretized into

even age intervals, which makes it unsuitable for training accurate

ge estimation models. Moreover, FG-NET contains only 82 subjects,

o a leave-one-person-out validation scheme is employed by conven-

ion, to avoid optimistic biasing by identity replication. Given such

imitations, and the recent tendency to use MORPH as a standard for

ge estimation, we concentrate on this database and on FRGC to pro-

ide experimental evaluations. Although the FRGC database is com-

arable to MORPH regarding number of samples, image quality and

ge range coverage, we have only found one previous publication

n age estimation including FRGC as part of their experiments [5].

ig. 2 offers a graphical visualization and comparison of the analyzed

atabases, by number of samples and age density. Fig. 2 also shows

he age distribution of the different datasets: it is evident that both

ORPH and FRGC have samples with age mostly concentrated on the

ange 20–55.

.2. Metrics

To evaluate the accuracy of the age estimators, the conventional

etrics are the Mean Average Error (MAE) and the Cumulative Score

CS). MAE computes the average age deviation error in absolute
is on age estimation, Pattern Recognition Letters (2015),
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Fig. 2. Left: Number of face samples per database. Right: global density per age. PAL and FG-NET are relatively negligible, and GROUPS annotates only intervals. We focus on

MORPH-II and FGRC. FRGC samples are skewed toward 20–30 years old.

Table 2

Reference tables summarizing the parametric choices we took to conduct the experiments, and the naming

for recurrent configurations.

Scheme Parameter Description Values Image size (px × px)

HOGxS
C,B C=Cx=Cy #cells {3, 4, . . . , 20} –

B #bins {7,8,…,20} –

S #scales { 1 50 or 100

3 all 50, 25 and 13

LBPu2xS
P,R P #neighbors {8,16} –

R Radius {2,3,…,10} –

S #scales { 1 50

3 all 50, 25 and 13

SURFxS
D D Dimension (for {64,128} –

base descriptor) –

S #scales {1,2,3} –

V Scale values {1.6,1.8,2, 50

2.4,3,4,5}

DNN Architecture NCkRPk − NCkRPk − UFRDk − F 50

N #filters {16,…,128} –

Ck Convolutional {3,…,11} –

Pk Pooling 2 –

U #units {256,…,1000} –

F Fully connected – –

R Rectifier – –

Dk Dropout 0.5 –

Name Parameters Image sizes (px × px)

HOGA Cx = Cy = 8, B = 9, S = 1 50

HOGB Cx = Cy = 15, B = 13, S = 1 50

LBPA P = 16, R = 3, S = 3 50, 25 and 13

SURFA D = 64, S = 3,V = {1.6, 2, 2.4} 50

SURFB D = 128, S = 3,V = {1.6, 2, 2.4} 50
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erms, MAE = ∑M
i=1 |âi − ai|/M, with âi the estimated age of the i-th

ample, ai its real age and M the total of samples. CS is defined as

he percentage of images for which the error e is no higher than a

iven number of years l, as CS(l) = Me≤l/M [2,14,31]. Related publica-

ions typically supply either an eleven-point curve for age deviations

0 − 10], or simply the value CS(5).

Throughout the rest of this paper, the optimal parameters are

earched so as to minimize the MAE score over MORPH, using 5-fold

ross-validation in all cases2. In particular, the division into train-

ng and validation sets is made so that all the instances of the same

ubject are contained in one single fold at a time; this applies to all
2 5 Cross-validation folder structure of the images used for each

atabase are available for comparison purposes in https://sites.google.com/

ite/ivanhuertacasado/deepanalysisage.

b

c

g

b
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he presented experiments. Descriptors are always extracted from the

ligned version of detected faces.

.3. Parameter analysis for local features

In order to evaluate in depth the performance of the analyzed fea-

ures for age estimation, we have conducted a deep analysis of the

ifferent parameters for the compared feature detectors. Table 2 lists

he parametric choices that we have considered, and gives names to

uccessful configurations for HOG, LBP and SURF descriptors that will

e used for fusion experiments. The multiscale versions result from

oncatenating base descriptors at different scales.

HOG parameters. When referring to HOGC, B, we are considering a

rid size Cx × Cy and number of bins B, whose optimal values have

een obtained through exhaustive logarithmic grid search and 5-fold
is on age estimation, Pattern Recognition Letters (2015),

https://sites.google.com/site/ivanhuertacasado/deepanalysisage
http://dx.doi.org/10.1016/j.patrec.2015.06.006
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Fig. 3. Results for HOGC, B feature over a single scale image at size 50 × 50 px with grid size C = Cx = Cy (rows) and B bins (columns). The bordered cell shows the best value.

Fig. 4. Results for the concatenation of HOG×3
C,B

features over 3-scale images at 50 × 50, 25 × 25, and 13 × 13 px, with grid size C = Cx = Cy (rows) and B bins (columns). The bordered

cell shows the best value.

Table 3

MAE for the single-scale descriptor LBPu2
P,R at 50 × 50 pixels, and for the 3-scale LBPu2×3

P,R

concatenating 50 × 50, 25 × 25, and 13 × 13. Neighborhoods of 8 and 16 are shown.

(Size) Radius R

2 3 4 5 6 7 8 9 10

LBPu2
8,R (59) 7.17 7.12 7.15 7.30 7.55 7.82 8.04 8.11 8.08

LBPu2
16,R (243) 6.88 6.70 6.66 6.76 7.06 7.25 7.40 7.51 7.81

LBPu2×3
8,R

(177) 6.48 6.49 6.66 6.82 10.75 – – – –

LBPu2×3
16,R

(729) 6.18 6.13 12.41 11.32 12.26 – – – –

s

f

1

t

a

cross-validation, for single and multiple scales. Best results were ob-

tained when Cx = Cy = C. As an implementation detail, a 50% cell

overlapping for smoothness and global L2 normalization, instead of

per-cell, have been used in our experiments. Other more sophisti-

cated and systematic approaches could be used to reduce the param-

eters’ combinations, but this is not the main focus of this paper. Mul-

tiscale variations are achieved by concatenating the feature vectors

obtained by the descriptor at different scales. In order to have a fair

comparison with the results reported in [12], images have been pro-

cessed at 50 × 50 (similar to the 60 × 60 size used in that paper).

However, we also evaluate the effect of different image sizes on the

final performance in Fig. 5, where images of size 100 × 100 were used.

In summary, Figs. 3–5 report the individual analysis of HOG descrip-

tors for a single scale at 50 × 50 pixels; for multiple scales (3 scales

at 50 × 50, 25 × 25, and 13 × 13; and for a single scale at 100 × 100,

respectively. Fig. 5 shows that 100 × 100 images provide even better

scores than the traditional sizes in the literature, but we conduct the

rest of experiments for 50 × 50 pixels for fair comparison. A single

HOG scale performed better.
 c

Please cite this article as: I. Huerta et al., A deep analys
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LBP parameters. For LBPu2
P,R

the analysis has been carried out by

earching the optimal number of sampled neighbors P and radius R,

or one and three scales, constraining the neighbors to be either 8 or

6, see Table 3. In the multiscale case, the smallest image size restricts

he maximum radius to 6 pixels.

SURF parameters. In the case of SURF, 5 descriptors are extracted at

certain scale from fiducial markers at the eyes, nose tip and mouth

orners, as provided during alignment, and concatenated into a single
is on age estimation, Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.06.006
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Fig. 5. Results for HOGC, B feature for a single scale image at size 100 × 100 px, with grid size C = Cx = Cy (rows) and B bins (columns). The bordered cell shows the best value.

Table 4

MAE results for SURF at one and multiple scale combinations (size in brackets).

Scale SURF64 SURF128 Multiscale SURF×S
64

SURF×S
128

1.6 6.09 (320) 5.72 (640) {1.6, 2} 5.73 (640) 5.39 (1280)

1.8 6.21 (320) 5.77 (640) {1.6, 2.4} 5.71 (640) 5.41 (1280)

2.0 6.24 (320) 5.81 (640) {2, 3} 5.95 (640) 5.60 (1280)

2.4 6.65 (320) 6.24 (640) {1.6, 1.8, 2} 5.67 (960) 5.34 (1920)

3.0 6.93 (320) 6.59 (640) {1.6, 2, 2.4} 5.59 (960) 5.30 (1920)

4.0 7.46 (320) 7.12 (640) {1.6, 2.4, 3} 5.60 (960) 5.33 (1920)

5.0 7.52 (320) 7.26 (640) {2, 2.4, 3} 5.84 (960) 5.53 (1920)
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Fig. 6. The need for regularization depends strongly on the ratio between training

examples M and feature dimensionality N. This figure shows 5CV results using 576-

dimensional HOGA over a single scale at 50 × 50 px and CCA, through different values

of γ and increasing examples from 100 to 50 K. As M increases the optimal γ ∗ decays,

dropping to zero for M � N.

s

a

m

5

×
r

S

a

c

f

d

c

f

c

escriptor. Multiple scales have been tested for both the original and

he extended descriptor (SURF64 and SURF128), as shown in Table 4.

.3.1. CCA optimal regularization

The optimal regularization cost γ ∗, as defined in Section 3, dif-

ers for each computed feature and parameter. For this reason,

nitially the above-mentioned grid search has been performed with-

ut regularization (γ = 0). Once the best parameters for the fea-

ure detectors have been identified, the optimal regularization cost

as been searched by looking for the minimum MAE. Addition-

lly, we impose γx = γy. However, our experiments suggest that no

ignificant changes are noticed when incorporating regularization

ue to the relative size of the database to the descriptor, as shown

n Fig. 6. Each curve represents a subset of examples of different size.

s the number of database examples M increases well over the fea-

ure dimensionality N, i.e. M � N, the optimal regularization cost γ ∗

minimum of each curve) tends to zero.

.3.2. Feature combination

In order to improve the accuracy of the estimation, and taking ad-

antage of the complementarity of different descriptors, a thorough

nalysis of fusion combinations among feature candidates has been

arried out. Different features are combined by simply concatenating

hem, as proposed, for instance, for pedestrian detection in [20]. Fea-

ure pooling and/or dimensionality reduction techniques [15] might

e used as well, but we prefer to stick with a simple approach and the

btained results reported in the following are promising. Similarly,

e have employed an early-fusion strategy, combining the features

rom the very beginning, before the classification and decision take

lace. Other strategies could have been used, such as a late-fusion
Please cite this article as: I. Huerta et al., A deep analys

http://dx.doi.org/10.1016/j.patrec.2015.06.006
trategy, where each feature is coupled with its own classification,

nd the fusion is performed at decision level, as in [30].

Although more combinations have been tested, Table 5 shows the

ost significant ones: single-scale HOG8, 9 and HOG15, 13, over 50 ×
0 px images (HOGA and HOGB); 3-scale LBPu2×3

16,3
, computed over 50

50, 25 × 25 and 13 × 513 px images, and concatenated (LBPA); the

aw gradient magnitude δI over 50 × 50 px images; and the 3-scale

URF×3
64

and SURF×3
128

computed over 5 fiducial points at scales 1.6, 2,

nd 2.4, and concatenated (SURFA and SURFB). Feature combinations

oncatenate the descriptors using the best parameters individually

ound, as described above.

The columns in Table 5 report a reference row number to ease the

escription in the following text, the feature names, the size of the

ombined descriptor, and its MAE. The table is vertically divided in

our parts. The uppermost part (rows 1–6) shows, with a bullet in the

orresponding column, the results with a single feature. The second
is on age estimation, Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.06.006
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Table 5

MAE for the fusion of the best descriptors. HOGA , HOGB and δI are computed over

a single scale (50 px). LBPA , SURFA and SURFB aggregate 3 scales. The best result is

achieved by fusing HOGB + LBPA + SURFA .

# HOGA HOGB LBPA δI SURFA SURFB (Size) MAE

1 • (576) 4.84

2 • (2925) 4.38

3 • (729) 6.13

4 • (2500) 5.58

5 • (960) 5.59

6 • (1920) 5.30

# HOGA HOGB LBPA δI SURFA SURFB (Size) MAE

7 • • (1305) 4.66

8 • • • (3805) 4.53

9 • • • (2265) 4.42

10 • • • (3225) 4.61

11 • • • • (4765) 4.51

12 • • • • (5725) 4.72

# HOGA HOGB LBPA δI SURFA SURFB (Size) MAE

13 • • (3654) 4.33

14 • • (5420) 4.33

15 • • • (6154) 4.30

16 • • (3885) 4.30

17 • • (4845) 4.33

18 • • • (4614) 4.27

19 • • • (5574) 4.33

20 • • • • (7114) 4.31

21 • • • • (8074) 4.34

# HOGA HOGB LBPA δI SURFA SURFB (Size) MAE

22 • • (3229) 5.07

23 • • (1689) 5.31

24 • • (2649) 6.45
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part (rows 7 to 12) shows the combinations with HOGA and LBPA in

common, while the third (rows 13–21) and fourth (rows 22–24) show

the results with different combinations, by keeping HOGB and LBPA

only fixed, respectively.

As observed from the summary of results in Table 5, SURFB re-

duces its MAE when fused with other features (from 5.30 years –

row 6 – down to 4.33 when combined with HOGB and LBPA – row

17 and 19), and performs worse than SURFA under the same combi-

nation (see rows 9–12, 16–21, 23 and 24). However, when considered

in isolation, SURFB performs better than SURFA (row 6 compared with

row 5).

The best result is obtained when combining HOGB, LBPA and

SURFA. This combination has the advantage of fusing texture and

local appearance-based descriptors. Another noticeable remark is

the so-called curse of dimensionality: the addition of further de-

scriptors into higher dimensional features not always enhances the

result (compare, for instance, row 15 with 20 or 21, or row 8

with 12).
Table 6

Results for non-regularized CCA (γ = 0) and for C

the best MAE, for each descriptor (BIF from [12]).

HOGB δI LB

(Size) (2925) (2500) (7

MAE (γ = 0) 4.38 5.58 6.

MAE (best γ ∗) 4.34 5.49 6.

γ ∗=0.001 γ ∗=0.002 γ

Table 7

MAE and CS(5) scores for MORPH and FRGC. Best possible de

MAE

HOGB δI LBPA SURFB Fu

MORPH–5CV 4.34 5.49 6.13 5.29 4.2

FRGC–5CV 4.19 4.38 4.45 4.44 4.17

Please cite this article as: I. Huerta et al., A deep analys
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The specific size of the most accurate descriptors does not seem to

e correlated to their accuracy either, at least not after proper regular-

zation has been applied. The HOG family of descriptors behaves par-

icularly well for the different granularities that were tested, HOGA

nd HOGB, of 576 and 2925 dimensions, respectively. This suggests

hat local appearance information is particularly useful and quite suf-

cient for capturing age patterns. The size of the descriptor deserves

mportant consideration in the case of CCA, as it strongly affects the

omputational efficiency of the training process, and plays an impor-

ant role in the stability of the solution: higher M
N ratios result in more

table pseudo-inverse matrices when searching for the CCA projec-

ion matrix.

Table 6 shows the effect of regularization on the features that

ielded best MAE scores in our experiments, over the MORPH

atabase and using the regularized CCA regression technique. The op-

imal regularization costs are provided. We have also included the

est results (to the best of our knowledge) achieved using the BIF de-

criptor, which is very commonly used in age estimation and provides

he lowest MAE for MORPH in the literature [12]. The size of BIF af-

er dimensionality reduction (4376) is very similar to the proposed

usion without any further processing (4614). Nonetheless, our pro-

osed fusion of local descriptors improves over the best registered

esult in this database, reducing it from 4.42 down to 4.25. It is note-

orthy to see how differently regularization contributes to each de-

criptor. For instance, it does not affect LBP, but it improves BIF by

8%.

Finally, these results have been obtained for FRGC as well. Table 7

ontains global MAE errors and CS(5) values for MORPH and FRGC,

hereas Fig. 7 shows the complete cumulative score curves for er-

or levels between 0 and 10. From Fig. 7(a) it can be seen that for

he MORPH database, the fusion of descriptors consistently improves

ver individual features, even for their optimal configuration of pa-

ameters and regularization. On the other hand, the FRGC curves are

ractically identical. As stated at the beginning of this section, this

ay be due to the lack of variability in the images of this database,

n which every individual averages 80 images, and all very alike. In

erms of MAE, the fusion of descriptors always obtains the best score.

.4. Parameter analysis for deep learning

The experimental evaluation for deep neural networks has been

onducted through variations of some of the most relevant parame-

ers in the network architecture: the number and nature of the lay-

rs, the rate of the learning process, and specific internal parameters

uch as the number of filters or the size of the convolution kernels.

he validation scheme continues to be 5CV, i.e. we divide the dataset

nto five folds, train the network parameters from scratch uniquely

sing the 50 × 50 images in four folds, test the network on the
CA with the regularization cost γ ∗ yielding

PA SURFB BIF Fusion

29) (1920) (4376) (4614)

13 5.30 5.37 4.27

13 5.29 4.42 4.25
∗ → 0 γ ∗ → 0 γ ∗=0.05 γ ∗ → 0

scriptors are used.

CS(5)

s. HOGB δI LBPA SURFB Fus.

5 69.5% 57.6% 52.1% 60.2% 71.2%

76.0% 77.9% 77.4% 77.5% 76.2%

is on age estimation, Pattern Recognition Letters (2015),
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Fig. 7. 5-fold cross-validation (5CV) cumulative score curves of the techniques evalu-

ated in (a) MORPH and (b) FRGC.
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Fig. 8. The learning rate parameter is chosen first due to criticality. We show how

validation loss evolves for 3 fixed values of learning rate, for the same architecture.

These values yield, from top to bottom, to instability, convergence, and slow learning.

Table 8

Selection of network configurations and their 5CV validation results on MORPH after

105 iterations.

Architecture Learning Weight MAE

rate decay

32C11P2 − 500FR − F 10−5 10−6 4.09

20C11P2 − 500FR − F 10−5 10−6 4.15

32C7P2 − 64C7P2 − 500FR − F 10−5 10−6 4.39

20C7P2 − 50C9P2 − 500FR − F 10−5 10−6 4.48

20C7P2 − 50C9P2 − 500FR − F 5 × 10−4 5 × 10−5 3.96

20C5P2 − 50C5P2 − 500FR − F 5 × 10−5 5 × 10−6 3.97

20C5P2 − 50C5P2 − 500FR − F 5 × 10−6 5 × 10−6 4.17

20C5P2 − 50C5P2 − 500FR − F 5 × 10−7 5 × 10−8 5.75

32C11P2 − 64C9P2 − 500FR − F 5 × 10−5 5 × 10−6 4.31

32C11P2 − 64C9P2 − 500FR − F 5 × 10−6 5 × 10−6 4.25

32C11P2 − 64C9P2 − 500FR − F 5 × 10−7 5 × 10−8 6.14

16C3RP2 − 32C7R − 512FR − F 5 × 10−5 5 × 10−4 3.98

16C3RP2 − 32C7R − 512FR − F 10−4 10−3 4.01

16C3RP2 − 64C7R − 256FR − F 5 × 10−5 10−4 3.96

16C3RP2 − 64C7R − 256FR − F 5 × 10−5 5 × 10−4 4.00

32C3RP2 − 16C7R − 512FR − 256FR − F 5 × 10−5 10−3 4.12

20C5P2 − 50C5P2 − 512FR − F 5 × 10−6 5 × 10−7 4.14

20C5P2 − 50C5P2 − 512FR − F 5 × 10−6 5 × 10−8 4.16

20C5P2 − 50C5P2 − 512FR − F 5 × 10−6 5 × 10−9 4.14

20C5P2 − 50C5P2 − 512FR − F 5 × 10−6 5 × 10−10 4.10

20C5P2 − 50C5P2 − 512FR − F 5 × 10−6 5 × 10−11 4.12

20C5P2 − 50C5P2 − 500FRD0.5 − F 5 × 10−6 5 × 10−11 3.90

20C5P2 − 50C5P2 − 1000FRD0.5 − F 5 × 10−6 5 × 10−11 3.88

32C3P2 − 64C5P2 − 128C3P2 − 500FR − F 10−5 10−6 4.07
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l
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emaining one, and average the testing results from the five possi-

le assignments. Axial symmmetry of the faces has been exploited as

form of data augmentation.

The choice and adaptation of the learning rate is crucial for the

uccess of a model, see Fig. 8. Currently, common good practices in-

lude either using (i) an automatic, progressive rate update as the it-

rations progress, or (ii) a fixed rate with significant manual decre-

ents after the learning curve stabilizes. Both intend to learn finer

haracteristics once an optimization minimum has been coarsely ap-

roached. During our evaluation, we decided to use a fixed learning

ate and manually readjust it after a reasonable number of iterations,

s this enabled us to better assess the effect of a single parameter in

he network, when modifying it across different experiments.

Table 8 shows a significant subset of the experiments that were

arried out while training the network. As it is common practice in

eep learning approaches, our initial setup replicated a previously

uccessful CNN (LeNet), and further adjustments were applied from

hat initial state. This architecture consists of a number of convolution
Please cite this article as: I. Huerta et al., A deep analys
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nd pooling layers, followed by a number of fully connected layers. In

ur case, the final stage is always a single regression unit.

We evaluated architectures with different number of layers (rang-

ng from 1 to 3), layer types, number of units, activation functions,

nd regularization techniques. Concretely, we use the notation Ck

or convolutional units of kernel size k; Pk for max-pooling units of

ernel size k; and F for layers featuring full connection among the

nits. The strides are always set to 1 pixel for convolutions, and for

ooling we always use the same value as their kernel size. R is in-

luded for those layers employing rectified linear units (ReLU), in the

orm f (x) = max(0, x). Layers with Dn incorporate dropout, i.e. ran-

om subsampling of n of the total units of the layer, which has been

roved useful to prevent overfitting. Here, half of the neurons are ran-

omly disconnected. For instance, 32C11P2 − 500FR − F represents a

ayer of 32 convolutional filters with 11-pixel kernels, followed by a

ax-pooling operation that reduces the output to half, a layer of 500
is on age estimation, Pattern Recognition Letters (2015),

http://dx.doi.org/10.1016/j.patrec.2015.06.006
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Table 9

Age estimation results in MORPH II and FRGC for the compared algorithms and visual descriptors, in

a variety of settings.

MORPH-5CV Technique Proposed by Feature Train/test MAE CS(5)

WAS [19] AAM+BIF 55K 9.21 –

AAS [7] AAS+BIF 55K 10.10 –

AGES [7,8] AAM+BIF 55K 6.61 –

RED (SVM) [2] AAM 6K 6.49 48.9%

OHRank [2] AAM 6K 6.07 56.4%

OHRank [2] AAM+BIF 55K 6.28 –

PLS [10,11] BIF 10K/55K 4.56 –

kPLS [10,11] BIF 10K/55K 4.04 –

IIS-LLD [7] AAM+BIF 55K 5.67 –

CPNN [7] AAM+BIF 55K 4.87 –

CCA [11] BIF 10K/55K 5.37 –

rCCA [11] BIF 10K/55K 4.42 –

kCCA [11] BIF 10K/55K 3.98 –

MFOR [31] PCA+LBP+BIF 4K 4.20 72.0%

SVM+SVR [14] BIF+ASM 78K 4.20 72.4%

SVR [5] HOG 55K 4.83 63.4%

rCCA This paper Fusion 55K 4.25 71.17%

CNN This paper CNN 55K 3.88 –

FRGC-5CV Technique Proposed by Feature Train / test MAE CS(5)

rCCA This paper Fusion 44K 4.17 76.24%

CNN This paper CNN 44K 3.31 –
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full-connected units with ReLU activation, and an output regressor.

The learning rate and the weight decay of the network is explicitly

stated for all the experiments in the table.

The computational requirements for training the deep neural

network differ substantially from the previous approach. Regarding

training time for one fold of 5CV-MORPH, 2-layer architectures take

usually 6–7h on an i7-3770 K with NVIDIA GTX770 graphics card us-

ing the Caffe framework [17], whereas 3-layer ones need 8–9 h. Com-

pared to them, extracting the chosen descriptors takes approximately

1min for HOG, 2 min for SURF and 12 s for LBP (less than 4 min

for their fusion), and learning the CCA model of the fused descrip-

tor takes 15s. Prediction times also differ: for deep learning models

it takes about 6 s, whereas CCA over fused descriptors is in the order

of milliseconds. In general, we observe that many of the deep learn-

ing architectures produce similar results, and fine parametric adjust-

ment progressively decreases the error. The inclusion of more layers

and units increases the learning capacity of the model, but also con-

tributes to its instability. By leveraging regularization techniques such

as weight decay, rectifiers for sparsity, and unit dropout, we manage

to achieve a more stable and accurate network, yielding a 5CV-MAE

of 3.88 for MORPH.

4.5. Discussion

Table 9 summarizes some of the most relevant contributions to

facial age estimation to date which supply cross-validation MAE over

either MORPH or FRGC, including the methods proposed in this paper.

Unlike ours, most of these contributions rely on flexible models with

tens of fiducials (ASM or AAM), or hand-crafted BIF features. More-

over, our proposals exploit the whole available sets of 55 K samples

for MORPH and 44 K samples for FGRC, by training from 4 folds, test-

ing over the remaining one and averaging all five combinations.

The 5CV-MAE given by the early fusion of local descriptors im-

proves over the best 5CV approach. On the other hand, the model

obtained by the deep learning technique has produced a 5CV-MAE

of 3.88 for MORPH. This value reduces the previous best result for

this database [11], which additionally was not employing a standard

5CV scheme due to computational limitations caused by the kCCA ap-

proach. The resulting CNN architecture has been also validated under

FRGC, resulting in a 5CV-MAE of 3.31, thus also decreasing the previ-

ous result by fusing local descriptors.
Please cite this article as: I. Huerta et al., A deep analys
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. Conclusions

Two very different techniques have been proposed for age esti-

ation from facial images. The first method is based on the early

usion of local invariant descriptors coupled with a standard sub-

pace learning technique, which requires few feature tuning, and

emonstrates that local appearance and texture are sufficient for

apturing age information. On the other hand, we also provided a

owerful deep learning framework that couples the extraction and

egression of meaningful cues by jointly optimizing both stages. Both

pproaches apply over eye-aligned 50 × 50 images, and do not re-

uire complex statistical facial models for precise alignment nor ad-

itional cues, unlike many traditional techniques for age estimation.

We have provided a thorough evaluation on the stability and ef-

ectiveness of these two approaches. Regarding local descriptors, our

xperiments show that the early fusion of HOG, LBP and SURF im-

roves over the best MAE score reported using the non-kernelized

CA technique, resulting in 4.25 years compared to the 4.42 of hand-

rafted BIF at 60 × 60 pixels. The experiments also show that this

istance can be further increased when using larger images as it has

een demonstrated using a single HOG descriptor (MAE 4.16). On the

ther hand, our deep learning architecture, although requiring more

pecific parameter tuning, decreased the minimum error to date from

.98 to 3.88, without imposing the restriction on the number of train-

ng samples caused by the kernel matrix size in kCCA. We explored

he robustness of these techniques in terms of parameter settings and

n the presence and lack of regularization.

Overall, we have conducted a quite comprehensive set of exper-

ments on the two largest and most used datasets to date (MORPH

nd FRGC). These experiments aim at not only demonstrating the su-

erior accuracy of the proposed approaches (as described above), but

lso to draw some considerations about the dimensionality of the

eature used. In fact, as a lesson learned, even though combining mul-

iple orthogonal features may result in lower MAE, it also increases

he complexity, and for some classifiers such as CCA and kCCA this

ay bring instability.

We can imagine future directions in our research. First of all, al-

ernative feature fusion strategies, such as feature pooling or sophis-

icated dimensionality reduction techniques, as well as late-fusion

trategies, should be developed and tested to either confirm that our

imple combination of feature suffices or to show better performance.
is on age estimation, Pattern Recognition Letters (2015),
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ext, other features should be tested both in isolation and combined

ith other features. Other possible future directions include the ad-

ition of a frontalization stage during preprocessing, particularly im-

ortant when dealing with real images, which are rarely frontal. Addi-

ionally, the proposed deep learning approach can be further refined

y new forms of data augmentation, the exploitation of multiscale

ersions of the input image, and carefully designed deeper network

rchitectures. Finally, the evaluation can be extended by further in-

estigating the distribution of errors across age ranges, gender and

thnicity; and the generalization capabilities can be tested through

ross-database validation schemes.
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Supplementary material associated with this article can be found,
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