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ARTICLE INFO ABSTRACT

State-of-the-art systems on cognitive surveillance identify and describe complex events in selected
domains, thus providing end-users with tools to easily access the contents of massive video footage. Nev-
ertheless, as the complexity of events increases in semantics and the types of indoor/outdoor scenarios
diversify, it becomes difficult to assess which events describe better the scene, and how to model them
at a pixel level to fulfill natural language requests. We present an ontology-based methodology that
guides the identification, step-by-step modeling, and generalization of the most relevant events to a spe-
cific domain. Our approach considers three steps: (1) end-users provide textual evidence from surveilled
video sequences; (2) transcriptions are analyzed top-down to build the knowledge bases for event
description; and (3) the obtained models are used to generalize event detection to different image
sequences from the surveillance domain. This framework produces user-oriented knowledge that
improves on existing advanced interfaces for video indexing and retrieval, by determining the best suited
events for video understanding according to end-users. We have conducted experiments with outdoor
and indoor scenes showing thefts, chases, and vandalism, demonstrating the feasibility and generaliza-
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tion of this proposal.
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1. Introduction

Automatic content-based video indexing has been requested for
digital multimedia databases for the last two decades, and more re-
cently, this need has also been emphasized in particular for video
surveillance applications (Foresti, Marcenaro, & Regazzoni, 2002).
Surveillance systems have strong storage and computer power
requirements, deal with continuous 24/7 monitoring, and manage
a type of content that is susceptible to be highly compressed.
Moreover, the number of security cameras increases exponentially
worldwide, opening windows of opportunity for smart forensic
analyses as vast archives of recordings constantly grow.

Current surveillance solutions for video annotation are robust
when solving common visual tasks like segmentation, object recog-
nition, or tracking, and handling specific issues, e.g. shadows, occlu-
sions, or weather conditions. However, emulating the potential of
human labor demands a deeper analysis. In particular, semantic
context plays a fundamental role in the recognition of complex
events (Smeulders et al., 2000). As a consequence, recent tracks in
this field aim to enhance the results of tracking techniques by incor-
porating video understanding capabilities that detect and describe
complex events observed in the video sequences, by means of ex-
pert knowledge (Fernandez-Caballero, Gomez, & Lopez-Lopez,
2008; Vallejo, Albusac, Jimenez, Gonzalez, & Moreno, 2009).
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Nevertheless, modeling semantic events becomes a difficult
task for experts: which ones are best suited for the description of
a specific scene? The chosen events can be excessively particular-
ized to ad hoc scenarios, or be too generic thus giving no relevant
information; some events may be redundant, and some may be of
no use for the concrete objectives of the system. These problems
are augmented by the fact that most of the symbolic approaches
used nowadays model knowledge in a bottom-up fashion, thus dis-
tancing themselves from the requirements of end-users (Albanese
et al., 2008; Borzin, Rivlin, & Rudzsky, 2007; Fusier et al., 2007,
Nagel & Gerber, 2008). As a result, even for sophisticated video
understanding systems it is especially difficult to assess how com-
plete and appropriate are the semantic descriptions of events
described.

In order to cope with these issues, we propose a methodology
that guides the modeling and evaluation of the best suited seman-
tic events given image sequences from the surveillance domain. It
considers the following steps:

1. First, in order to learn which events are important for our
selected surveillance domains, several video sequences from
indoor and outdoor scenarios are textually described by end-
users.

2. The semantic descriptions are then used to build up the differ-
ent ontological knowledge bases of the system, by means of a
detailed top-down procedure accomplished by experts that
makes events extensive to the tackled domain.
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3. Finally, the generality and extensibility of the produced models
within the domain is tested on new, semantically rich indoor
and outdoor video sequences.

Our proposal bases on the cognitive vision system presented in
Fernandez, Baiget, Roca, and Gonzalez (2008) Gonzalez, Rowe,
Varona, and Roca (2009), and extends it with the following
contributions:

e an expert-based ontological procedure models semantic events
for a video surveillance system and assesses their suitability
and completeness;

o the top-down modeling of the ontological models facilitates
user interaction capabilities toward advanced video indexing
and retrieval; and

o the method unifies scenario-dependant models into generally
applicable ones by using the evidence given by end-users.

The resulting system builds upon the effective recognition of
semantic context that is user-oriented, i.e., modeled according to
the expectations of end-users.

This contribution is structured as follows: next section reviews
similar work on the field. Section 3 overviews the two steps of the
proposed methodology, i.e., top-down event modeling and bottom-
up event inference. Subsequent sections explore the modeling pro-
cedure in more detail: Section 4 describes the construction of the
ontological knowledge bases at different levels, and Section 5
implements natural language interfaces for description and query
retrieval that will be used to demonstrate the effectiveness of the
generated models. Sections 6 present experimental results of video
indexation/retrieval and Section 7 and draw some final remarks.

2. Related work

In the literature, many methods for content-based video index-
ing deal with similarity measures based on trajectory, color,
texture, and shape (Conci & Castro, 2002; Yoo, Park, & Jang,
2005). They commonly search for video shots by computing low-
level features on entire or partitioned image frames, which are
compared to those in consecutive frames to detect strong transi-
tions (Lee, Yoo, & Jang, 2006; Zhu & Liu, 2009). Although low-level
features are particularly useful for still image retrieval (Conci &
Castro, 2002; Smeulders et al., 2000; Yoo et al., 2005) and video re-
trieval in movies, broadcast news, or sports (Xiong et al., 2006),
they exhibit practical drawbacks for video surveillance. Firstly, sur-
veillance footage hardly ever presents strong transitions between
consecutive frames, since the changing image fractions are usually
too small to result in detectable changes. Secondly, the semantic
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analysis assessed by low-level features is very limited, especially
when working on very specific contexts. Finally, users prefer to re-
trieve content regarding higher-level features, e.g. the semantic
explanation of the occurrences or their circumstances.

Few approaches on content-based video retrieval tend to incor-
porate understanding capabilities to their systems, thus allowing
flexible user queries towards content retrieval (Le, Boucher, Thon-
nat, & Bremond, 2008). Towards this end, the use of top-down im-
age retrieval techniques has been proven to assist the recognition
of context by providing semantic guidance through the process
(Torralba, Fergus, & Freeman, 2008). Top-down approaches are
especially interesting as well in the case of video browsing, which
enhances the retrieval capabilities by organizing the videos given
their essential semantic content (Xiong et al., 2006).

The recognition of events in video sequences has been exten-
sively tackled by the research community, ranging from simple ac-
tions like walking or running (Niebles, Wang, & Fei-Fei, 2008) to
complex, long-term, multi-agent events (Laxton, Lim, & Kriegman,
2007). Nevertheless, the recognition of behaviors more complex
than basic interactions has not been investigated as exhaustively
as the rest. Two main approaches are generally followed in the rec-
ognition of non-basic events: probabilistic frameworks (Xiang &
Gong, 2006), or rule-based approaches, in which complex events
are recognized as the combination of atomic primitives structured
by predefined or learnt rules (Zhang, Huang, & Tan, 2008).

Given that surveilled scenarios are usually specific environ-
ments like traffic locations, airports, banks, or border controls, to
cite few, it is reasonable to make use of domain knowledge in order
to deal with uncertainty and evaluate context-specific behaviors.
Recently, different tools based on symbolic approaches have been
proposed in order to define the domain of events appearing in se-
lected environments, e.g. those based on conceptual graphs or con-
ditional networks. Nagel and Gerber (2008) proposed a framework
that combines situation graph trees (SGT) with fuzzy logic reason-
ing, in order to generate descriptions of observed occurrences in
traffic scenarios. Extensions of Petri Nets have also been a common
approach to model multi-agent interactions, and used as well for
human activity detection (Albanese et al., 2008). Some other recent
approaches have employed symbolic networks combined with
rule-based temporal constraints, e.g. for activity monitoring appli-
cations (Fusier et al., 2007). Fig. 1 shows examples of these sym-
bolic structures used in video surveillance.

All these symbolic models, which work with predefined behav-
iors, show good performances at behavior recognition, provide
explanations of the decisions taken, and allow uncertainty to be
incorporated to the analysis, thus making it more robust to noisy
or incomplete observations. We choose SGTs over other symbolic
approaches due to the efficacious mechanisms of specialization

&= €2 Enter_ZOI
¥
el Gp Xis
4 b
£t e inside a
Exit_ZO zol
v
B
Start_walking
o g4 Start_running

Stops

(b)

(c)

Fig. 1. Common symbolic approaches for behavior modeling: (a) situation graph tree (Nagel & Gerber, 2008); (b) Petri nets, (Albanese et al., 2008; Borzin et al., 2007) and (c)

symbolic network (Fusier et al., 2007).
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and prediction they incorporate, which help modeling the universe
of situations in a clear, flexible, and controllable manner. SGTs and
fuzzy metric-temporal logic, unlike Petri nets, are adapted to mod-
el and evaluate human behaviors on specific contexts, which we
provide by means of ontologies.

The cited symbolic approaches allow semantic representations
of the events detected, which facilitate implementing user-com-
puter interfaces. Nonetheless, none of them carries out a thorough
evaluation of the correctness or suitability of the selection of
events, mainly due to the limited amount of semantics found in
the video sequences. Other works have proposed lists of semantic
events for the surveillance domain directly proposed by specific
groups (Vezzani & Cucchiara, 2008), or based on the system
capabilities to generate them (Fernandez-Caballero et al., 2008;
Sanchez, Patricio, Garcia, & Molina, 2009). We propose instead to
base the models on evidence provided by human participants.

3. General system

The general architecture of the proposal is presented in Fig. 2.
We divide the system in three distinguished levels devoted to vi-
sual, conceptual, and user interfacing tasks, and the presented pro-
cess is as well divided in two steps: an initial top-down modeling
of the knowledge bases guided by an expert, and a subsequent
automatic, bottom-up inference by the system using the resulting
event models.

The top-down event modeling works as follows: first, based on
several training videos, we gather event descriptions reported by a
large number of non-expert users and assess the variability of
these reports. The descriptions are then used to build the semantic
models in a top-down fashion, which will be later used for the
tasks of automatic event description in different videos. The con-

C. Ferndndez et al./ Expert Systems with Applications 38 (2011) 4068-4079

ceptual models are designed in a strict top-down fashion, unlike
the majority of current approaches for video indexing and under-
standing. Our integrative architecture incorporates a large compo-
nent of domain-knowledge that is managed by dedicated modules,
a common characteristic of expert systems.

Once the models are available, the system performs bottom-up
event inference on new video sequences. Video footage is first
analyzed by motion trackers: the visual stage simultaneously
tracks multiple targets in unconstrained and dynamic open-world
scenarios. In our experiments, the detection of targets follows a
statistical background-subtraction approach based on color and
intensity cues (Gonzalez et al., 2009). Subsequently, the object
trackers provide instantaneous target states over time, including
quantitative data (e.g. velocity, size) and qualitative information
(e.g. occlusions, groupings, splits, target births and deaths). En-
hanced details and additional information can be found in Gon-
zalez et al. (2009).

The bottom-up inference continues at the conceptual levels. The
quantitative data obtained from tracking is conceptualized and
processed by the spatiotemporal inference module, which reasons
about basic facts using general dynamic rules and spatio-concep-
tual models. At the contextual reasoning stage, we use domain-
specific knowledge to interpret the context of each occurrence
and produce linguistic-oriented predicates. Each predicate involves
concepts like agents, objects, or locations, and relational patterns
from the ontology: these constitute the indexes stored in a rela-
tional database to enable video retrieval. Final modules for user
interfacing allow richer interactions with end-users. In our case,
we have implemented (i) a module to generate natural language
descriptions of the event indexes, and (ii) a module that interprets
natural language texts to accomplish efficient query-based
retrieval.
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Fig. 2. General overview. (a) First, general knowledge bases are built top-down, based on end-user descriptions of events. (b) Once domain knowledge is available, automatic

indexing and retrieval of any video in the domain is accomplished bottom-up.
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Next sections detail how to accomplish the top-down modeling
of events.

4. Conceptual level

This section describes the top-down modeling employed to ad-
dress tasks of knowledge management, inferential reasoning, and
video understanding. The different steps include (i) building a do-
main ontology from linguistic psychophysical tests run on several
subjects, (ii) contextualizing targeted events with concrete models
that decompose them into simple facts, and (iii) link these facts to
spatiotemporal data available from tracking.

4.1. Ontological modeling of relevant events

The target events to be detected in surveilled footage are typi-
cally determined by the purposed application. Nevertheless,
assessing interpretations often becomes uncertain when dealing
with complex events, leading to engineered solutions that may dif-
fer from end-user’s perceptions. In order to deal with this, we have
run questionnaires to identify which events are relevant to end-
users in our restricted domain, in order to model them in a top-
down fashion.

The ground-truth annotation of events has been extracted this
way from psychophysical experiments of manual video annotation.
Three scenes from indoor and outdoor scenarios have been re-
corded, showing different kind of interactions among people, ob-
jects, and vehicles, see Fig. 3. They show some complex events
like stealing objects, crossing roads, waiting to cross, or getting al-
most run over by cars. A population of 60 English speakers were re-
quested to visualize the videos.! 40 of the subjects were told to
annotate at least 20 notable occurrences happening in each train-
ing sequence, the other 20 did the same for the two test sequences
used for experimental results. Similar annotations were manually
gathered together by experts, e.g. ‘talk’ — ‘have a conversation’ -
‘discuss’ — ‘talk to someone’. Table 1 gives the frequency of com-
mon annotations for outdoor and indoor training videos. For events
occurring more than once in the same video, the maximum fre-
quency was considered.

An ontology of events has been created out of the results pro-
vided. Each annotation incorporates, explicitly or implicitly, the
semantic context required to model an event, by means of a series
of concepts that have been structured in three categories: events,
entities, and constraints. The Event concepts identify the occur-
rence described, and are organized from simple to complex as (i)
spatiotemporal inferences from tracking, (ii) interactions among

1 The subjects (half men, half women) were recruited from 5 different countries
and from different age intervals: 18-25 (12%), 25-35 (66%), and over 35 (22%). They
also came from different backgrounds: technical studies (27%), sciences (40%),
humanities (30%), and other (3%).

(c)

Fig. 3. Snapshots of outdoor (a,b) and indoor (c) video surveilled scenarios used for the ground-truth annotation of semantic evidence.

Table 1
Most common annotations for the two scenarios, sorted by percentage of people that
used them to describe the semantic events.

Use Outdoor annotations Use Indoor annotations
(%) (%)
100 Leave object 100 Pick up/retrieve bag
100 Wait/try to cross 96 Leave a location
90 Walk in a location 96 Use vending machine
86 Cross the road 96 Sit down at a table
84 Run off/away 92 Talk to someone
84 Yield someone 920 Appear in a location
80 Chase after someone 88 Leave a bag on the floor
70 Pick up an object 85 Stand up
63 Join someone at a location 81 Shake hands with
someone
60 Appear in a location 69 Kick/hit vending machine
50 Steal object from someone 62 Carry a bag
47 Do not allow someone to 58 Go/walk to a location
cross
44 Danger of runover 50 Abandon/forget an object

entities, and (iii) interpretations of complex events in specific con-
texts. Entity concepts determine the nature of the participants in
the event, which can be agents, objects, or locations. Finally, Con-
straint concepts account for the roles that entities are required to
satisfy within an event, i.e., the list of agents, patients, locations,
or objects needed. All these concepts are classified in taxonomies
and together conform the terminological part of the ontology, the
so-called T-Box 7 (Guarino, 1995). Table 2 reports how the anno-
tated events are used to build the T-Box of the ontology: the enti-
ties required by each event are identified, and related to the
particular event by means of constraints, which give additional
information on the type of relationship held with each of the
entities.

Apart from 7, the ontology also incorporates an ABox A storing
concept instances, i.e., factual information regarding the world state
and the individuals existing on it (Guarino, 1995). Once the abstract
events, constraints, and entities are satisfied for a certain world state,
these concepts are instantiated into the factual database as Facts,
Constraint instances, and Entity instances, respectively. For
example, for the theft event in Table 3, the ontology requires a thief,
isAgent(Pedestrian), a victim, has_agent_interaction(Pedestrian), and
a stolen item, has_object_interaction(Object), in this case fulfilled by
instances ped2, ped1, and obj1, respectively.

In the end, the domain of interest is formally represented by a
knowledge base K = (7, .A), the factual database, which includes
both the concepts and their instances. Fig. 4 gives a concise view
of the factual database implemented: the abstract concepts are
Events, Entities, and Constraints that state which entities are needed
for which events. On the other hand, instances for these three types
of concepts are stored in the three other tables: Entity instances list
appearing entities, Facts are detected occurrences of events, and
Constraint instances link ones to the others.
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Table 2
A list of examples on how the user annotations are used to populate the T-Box 7 of the ontology with concepts and relationships.
User annotation Event Entities Constraints
pick up bag pick_up Pedestrian is_agent
PickableObject hasObjectInteractionWith
wait to cross wait Pedestrian is_agent
Location hasLocationInteractionWith
leave a location exit Agent is_agent
Location hasLocationInteractionWith
steal object from someone theft Pedestrian is_agent
PickableObject hasObjectInteractionWith
Pedestrian hasPatientInteractionWith
danger of runover danger_of_runover Vehicle is_agent
Pedestrian hasPatientInteractionWith
abandon/forget object abandoned_object PickableObject isObject
Location hasLocationInteractionWith
meet with someone meet Pedestrian is_agent
Pedestrian hasPatientInteractionWith
Location hasLocationInteractionWith

Table 3
Possible instances of entities (left) used in event indexes (right). For a theft to be
indexed, ped2, ped1, and obj1 must accomplish a certain semantic context.

Entity type Instance Event type (7) Indexed fact (A)

(T) (A)

Pedestrian ped2 = Spatiotemporal walk (ped2,fast)
Vehicle vehl Interaction appear (ped2,sidewalk)
Location sidewalk Interaction pick_up (ped2,obj1)
Object obj1 Interpretation theft (ped2, ped1, obj1)
Descriptor fast Interpretation danger_of_runover

(vehl,ped2)

4.2. Contextual modeling

At this point, the ontology already states which elements are re-
quired by each event, but we still need to model the domain-spe-
cific context in which an event occurs. As stated before, events are
situated in their context by means of SGTs.

An SGT defines the universe of possible situations in which an
agent can participate. Each situation scheme evaluates a set of con-
ditions in form of atomic predicates and reacts when all of them
are asserted. In our case, reactions are note commands that pro-
duce the linguistic-oriented event indexes seen and facilitate NL-
based retrieval (Nagel & Gerber, 2008). Fig. 5(a) and (b) show parts
of SGTs that exemplify their basic mechanisms to contextualize:
situations are hierarchically nested from general to specific by
means of specialization edges forming a tree, and sequentially con-
nected by unidirectional prediction edges producing graphs within
the tree. Self-prediction edges hold a current situation until any
continuing situation applies. This scheme recurrently decomposes
the evaluation of complex facts into series of low-level facts, which
need to be asserted sequentially.

Carrying on the top-down modeling of semantic events, we build
SGTs to define a priori the situations agents can be in. To do so, com-
plex actions are decomposed in a combination of simpler events that
are sequentially connected in time. Table 4 details the decomposi-
tion of the situations 1eft_object,abandoned_object,pick_up,

Event Constraint Entity
code [name code |narne |Darent code |name
| 1 |SituationEvent | | 16 hasLocationInteraction 11 1 Enkity
2 Status || 17 |isagent 11 1 2 Agent
3 BehaviorInterpretation | | 18 hasPatientInteractionwi 11 B 3 Location
'] 16 isEntity 12 B 4 Object
22 Exit 20 hasPatientInteraction¥i 12|
m - ses 16 Destination
| 24 Go | | 33 hasLocationInteraction' 22 ba
u 25 Enter | | 34 ishAgent 22 18 vehicle
| 26 Cross 35 hasSideDescriptor 22 e
| Z7iLaseobct > 42 PickableObject
| 28 Picklp 37 hasLocationInteraction' 23 q 43 Bag
29 Objectleft 38 hasSideDescriptor 23
|
code |argument_type |parent |argument  |entity_value |descriptor_value code \narne active entity
— > | 1 road 1 3
|| 2 492 40 || 2vawe 1 38 28 || 2 upper_sidewalk. 1 3
| 3 563 66 | | 3 EnTITY z 70 6 8| 3 crosswalk 1 3
| 4 591 23 | | 4 ENTITY z2 59 2 | | 4 upper_crosswalk 1 3
| | 5 615 27 | | S ENTITY 3 111 & | | S lower_crosswalk 1 3
I T I T | L e ———
N 7 642 40 | | 7 ey 3 110 4 | 7 Object1 1 42|
- 8 656 40 | | 8 ENTITY 4 108 6 | | & Agent2 1 17|
L1 9 667 10 || 9 ENTITY 4 107 4 || 9 Agent3 o 18
| 1 10 692 33 1 10 ENTITY 5 45 ] || 10 Agent4 0 18
11 799 25 11 ENTITY s 47 7 11 Agents 0 17
Fact Constraint Instance Entity Instance

Fig. 4. Detail of the structured relations between concepts and instances in the factual database: upper tables contain T-Box concepts (events, constraints, and entities), and

lower ones show their A-Box instances.
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Fig. 5. SGT mechanisms to situate events in a context: (a) temporal prediction and (b) specialization. These SGTs incorporate the decompositions shown in Table 4. A part of

an SGT used in outdoor scenes is shown in (c).

Table 4

To model SGTs, high-level events from the ontology are decomposed into conjunctions of simpler events that are temporally chained. The obtained decompositions are then

merged in a single tree of situations for each type of agent.

ID High-level predicate Temporal decomposition
) left_object (Object,Agent) to: split (Agent,Object) Ahas_speed (Object,zero)
@ abandoned_object (Object,Agent) to: left_object (Object,Agent)
t1: has_distance (Agent,Object,far) Ahas_speed (Object,zero)
©) pick_up (Agent,Object) to: _object (Object,Agent)
t1: grouped (Agent,Object) Ahas_speed (Object,V) Ais_not (V,zero)
@ stopped (Pedestrian) to: has_speed (Pedestrian,V) Ais_not (V,zero)
t1: has_speed (Pedestrian,zero)
® running (Pedestrian) to: has_speed (Pedestrian,high)

stopped, and running. It can be observed that many elements in
the various decompositions are common, and thus can be merged
in a single SGT. Simpler events are recursively decomposed until
reaching to a combination of mere spatiotemporal descriptions.
The five examples of decomposition in Table 4 have partially gener-
ated the SGTs shown in Fig. 5(a) and (b). More complex events are
also possible: for example, by combining actions like leave object,
get close, pick up, and run, a theft event can be modeled, as shown
in Fig. 5(c). Extra events are sometimes included into the ontology
for better definition of a particular context, e.g. for the event
belongs_to.

The role of SGTs in the overall scheme is twofold: on the one
hand, they help understanding the full picture of a scene by assess-
ing high-level interpretations from concrete pieces of information.

And on the other hand, SGTs make it possible to distrust or simply
neglect certain frames when the position of a target suddenly
changes to a far distant location, e.g. if the tracker freezes for a
while. These and similar situations make them a suitable tool to
partially bridge both semantic and sensory gaps in our domain.
The current implementation of the SGT only asserts those pred-
icates with highest confidence values, which unfits the system to
handle multiple valid hypotheses at the same time, but in ex-
change avoids a combinatorial explosion of solutions. Only one
event annotation is produced by the SGT per frame and tracked
agent, which allows us to associate each predicate with an interval
of validity, and build a history of events related to each detected
object. When an alarm is missed at the vision level, an SGT instan-
tiates the most specific of the events in the graph given the state
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conditions available. The more levels we define in the hierarchy,
the more robust the system is in front of lacking information, but
the computational cost increases.

4.3. Spatiotemporal modeling

The last conceptual task involves describing the multiple atomic
events used in the SGTs in terms of low-level information provided
by the motion trackers. To do so, a set of basic spatiotemporal rules
are defined for the domain, focusing on general rather than partic-
ular contexts.

The reasoning engine of the system is based on fuzzy metric-
temporal logic (FMTL), which extends conventional logic by tempo-
ral and fuzzy components. The first component permits the engine
to represent and reason about propositions evaluated at each time-
step, while the last one enables it to cope with uncertain or partial
information, by allowing degrees of validity. Temporally-valid
numerical status vectors from tracking are converted into
has_status fuzzy predicates at each time-step, which convey
information about the id and type of the target, its spatial location
in a ground-plane representation of the scenario (X,Y), and his
instantaneous orientation (Theta) and velocity (V) at time t

t ! has_status (Agent, X, Y, Theta, V).

General spatiotemporal rules for each type of agent assign fuzzy
values like slow or very fast, according to the membership functions
modeled. A schematic representation of the locations in the sce-
nario is as well predefined in terms of factual atomic predicates.
In addition to these two sources of information, the reasoner
provides inferences of new facts based on temporal-geometric con-
ditions: the role of the designer at this point consists of explaining

"He waits with another pedestrian.”

END-USER
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every generic low-level predicate found in the SGTs in terms of the
has_status variables. For instance, for a similar_direction
predicate, the tracking data is derived to symbolic information as
follows:

always (similar_direction (Agent,Agent2):-
has_status (Agent,_,_,_,0rl,_),
has_status (Agent2,_,_,_,0r2,_),
Difl is Orl — Or2,
Dif2 is Or2 — Orl,
maximum (Difl,Dif2,MaxDif),
MaxDif < 30).

Hence, the FMTL reasoner engine converts geometric informa-
tion into qualitative knowledge that is time-indexed and incorpo-
rates uncertainty. Note that FMTL rules are defined generally for
the domain, and not dependent on particular scenes: only the
semantic zones must be modeled for a new scenario. This way,
the models are extensible and tracking information is easily con-
ceptualized and forwarded to the upper levels discussed.

5. User interfacing level

Video search and retrieval interfaces are used by end-users,
thus demanding flexible and user-friendly tools for natural lan-
guage interaction. In order to demonstrate the validity of our
semantic framework to connect with advanced NL interfaces and
fulfill non-trivial requests in English language, this section de-
scribes a possible extension to natural language generation (NLG)
and natural language understanding (NLU).

"Who waited with someone for the last time?"

e I

| 4 - Morphology and formatting

| 1 - Morphological parsing

“he wait with another pedestrian”

| 3 - Referent expression generation

“pedestrian wait with pedestrian”

<who>-wW [entity.agent]
<wait_with>—wvP [event.interpret.wait_with]
<someone>—wn [entity.agent]
<last>—wt [descriptor.last]

| 2 - Query association by Tree Edit Distance

| 2 - Lexicalization

(waitﬁwith(pedestrian$0, pedestrian$1)>

- - - pedestrian$0

- - - wait_with$0
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1 - Linkage to tree templates

query ( Agent=7?,
Event = wait_with,
Descriptor = last)

| 3 - Conversion to SQL query

SELECT l.name, F.time
FROM event E, factF, instancel,
constraint C, constraint_instance Cl
WHERE F.code = Cl.fact AND F.type = E.code
AND Cl.entity = l.code AND Cl.type = C.code
AND E.name = "wait_with"
AND C.name = "has_agent_interaction_with"
ORDER BY F.time DESC LIMIT 1
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Sent: 1010:1024 ! wait_with (ped2, ped4)

I FACTUAL DATABASE

| |
Retrieved: 1010:1024 ! wait_with (ped2, ped4)

Y

Fig. 6. Step results for the processes involved in the NLG and NLU modules. Notice that the concepts linked to words at different steps are either Facts or Entity Instances from

the factual database, as seen in Fig. 4.
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NLG has been often considered a process of choosing suitable
expressions to communicate some content, whereas NLU has usu-
ally been regarded as a process of hypothesis management that de-
cides for the most probable interpretation of linguistic inputs
(Reiter & Dale, 2000). In our case, the first module facilitates the
generation of NL sentences for the indexed events, while the latter
enables video and information retrieval from NL textual queries.
Fig. 6 illustrates these processes, explained next.

5.1. Natural language descriptions

The first stage of the NLG module enhances standard parsing
techniques in order to convert an incoming predicate into a tree
structure, which gives a unique predicate interpretation and pro-
vides a background structure for the final surface sentence. Predi-
cate types are linked beforehand to tree templates, whose shapes
come predefined by the already seen ontological constraints held
by the event; for instance, is_agent determines the agent (subject
of active sentence) for wait_with, see Fig. 6. In addition, different
templates are possible depending on the information available: in-
stead of “X waits with Y” we could have “X waits with Y in Z”, thus
producing an extended tree.

A lexicalization process maps semantic elements into linguistic
resources (units or subtrees) that communicate their contents.
Tree templates already assign lemmata to events and prepositions,
but additional steps are required for entities. First, particulariza-
tions must be applied when available, e.g. replacing a general pred-
icate appear(agent,location) by appear(vehicle, left). Subsequently,
lexical choices are given for specific parts of the domain, such as
upper_right being expanded as “upper right side”.

At this point, we must solve the issue on how to refer to entities
so that they can be easily identified in the context of the discourse.
This task is known as referring expression generation (REG) (Reiter
& Dale, 2000), and we accomplish it with the help of onomasticons
(Fernandez et al., 2008). An onomasticon is a repository that tracks
instances of entities along the discourse, allowing the system to
answer questions like: has it ever been instantiated?, more than
once?, are there other instances of the same concept?, was it the cen-
tral entity in the last sentence generated?, or was the last instance def-
inite? The proper combination of these REG cases allows the NLG
module to choose the most appropriate referring expression, like
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an [entity], a new [entity], the [entity], this last [entity], the second
[entity]. For example, if we have seen a car in the scene previously,
and a new agent of type car appears, we use “a new car”; otherwise,
if none of the vehicles or other agents seen was specifically a car,
we use simply “a car”, thus highlighting the class instead of the ac-
tual instantiation.

Finally, the morphological and surface realization process in-
volves mapping the specification of a text into a surface text form,
i.e., a sequence of words, punctuation symbols, and mark-up anno-
tations to be presented to the end-user (Reiter & Dale, 2000). In
practice, it consists of applying parsing techniques to modify either
independent words (verb inflections or conjugations, plurals) or
words depending of their surrounding context (contractions, vowel
adjacency, prosodic effects). In the example of Fig. 6, the third per-
son of the verb has been conjugated; similarly, this step also up-
dates tenses (“leave” — “has left”) and changes words in context
(“a agent” — “an agent”). As a result of the morphological process,
a rich semantic/syntactic tree structure with referred expressions
and morphological forms is generated. The linearization of the tree
nodes and a final addition of orthographical and formatting infor-
mation provides a final surface form for the end-user.

5.2. NL-based retrieval

Following the idea of hypothesis management, the NLU module
links textual sentences to their most accurate interpretations in the
domain, in form of predicates related to scene concepts and in-
stances. Once a proper formatting has been applied, an input sen-
tence is analyzed through a sequence of three processes
(Fernandez et al., 2008): first, a morphological parser tags words
with linguistic features depending on the context of apparition,
and a syntactic/semantic parser builds a dependency tree out of
the tagged sentence. Secondly, the resulting tree with ontological
references is assigned to the most related query predicate from a
collection of patterns. Finally, the obtained predicate is used to
query the factual database of indexed occurrences. The process is
detailed next.

The semantic part of the analysis already starts with the word
tagging process: the lexical models attach domain concepts to
words that potentially refer to them. Hence, there are two issues
to solve, since (i) a word can be linked to several concepts, e.g.

PatternSentencel

Test Sentence

<right>[RightSide]

PatternSentence2

PatternSentence3

1

drive (Vehicle$0,
Location$0,
VelDescriptor$0)

Predicate =?

walk (Pedestrian$0,
Entity$0,
VelDescriptor$0)

drive (Vehicle$0,
Location$0)

Edit Cost (add) = 0.5

Edit Cost (delete) =0,

Edit Cost (replace with child) =0
Edit Cost (replace with others) = 1

Children (Go) = {Walk, Drive, ...}

Children (Entity) = { Vehicle, Pedestrian, ...}
Children (VelDescriptor) ={ Slow, ...)
Children (Location) = { RightSide, ...)

TED (PatternSentencel) = 0.0
TED (PatternSentence2) = 2.0
TED (PatternSentence3) = 0.5

drive (Vehicle = Car1,
Location = RightSide,
VelDescriptor = Slow)

Fig. 7. A test sentence is compared to a collection of pattern trees, each one associated to a generic predicate. The predicate of that pattern with a lowest TED specializes its

predicate with information from the sentence.
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Table Column
Vending machine  [€ Chair segment
Fountain [[] Cafeteria segment

word “turn left” (concept OrientationDescriptor) and “left entrance”
(Location); and (ii) each concept may also have many words at-
tached to it, as for the words “person”, “pedestrian”, or “walker”
and the concept Pedestrian. Parsing rules solve the first ambiguity.
Regarding the second issue, a robust system must be able to under-
stand not modeled words, i.e., to sensibly link unknown words to a
domain concepts. To this end, we rely on the WordNet lexical data-
base (Fellbaum et al., 1998) to retrieve lists of closely related
words, using semantic metrics based on synonymy and hyperny-
my. New word candidates are evaluated to determine the nature
of the unknown word. As a result, the word is linked to a number
of concepts that can explain it.

Next, a dependency tree is built with the help of syntactical rules,
which first identify the heads of phrase classes and then recursively
nest words and phrases hierarchically. The resulting tree is then
compared to a collection of tree patterns by computing a semanti-
cally-extended tree edit distance (TED) (Bille, 2005), see Fig. 7. In or-
der to compute the TED, the concepts at the leaves of the pattern
trees are aligned to those from the test tree, and the TED evaluates
the coincidence of each concept: it penalizes strongly the absences,
penalizes the generalizations proportionally to the number of levels
to the test concept, and does not penalize at all when the test con-
cept matches or particularizes the pattern one. For example, the
concept Car augments the distance with pattern tree 2 having Pedes-
trian at the corresponding leaf, but specializes the general concept
Vehicle in the same position of pattern 3 with distance zero. The pat-
tern tree with lowest distance to the test tree is decided as the most
valid interpretation, and the fields of its associated predicate are
particularized with specific information from the sentence.

A final step adapts the query to the relational language used for
the factual database, in this case SQL. The retrieval process returns
the entries that satisfy the query of the end-user, along with the
interval of the video sequence corresponding to the event index.
Some examples of NL-based retrieval are presented in the next sec-
tion, along with the rest of the experimental results.

6. Experimental results

The ground truth annotation of events was accomplished using
three different image sequences, two outdoor and one indoor. The
first outdoor sequence (2250 frames@25 fps, 640 x 480 pixels)

D Sidewalk segment
Wall segment
n Crosswalk segment Sand segment

(b)

Fig. 8. Indoor and outdoor video footage to test indexing and retrieval (a) and their associated spatio-conceptual models (b).

Road segment

E Grass segment

shows the entrance of a public building, where pedestrians come
in and out and interact with some cars and motorbikes on their
way. The second outdoor sequence (600 frames@15 fps, 1256 x
860 pixels) is a crosswalk scenario, in which 4 pedestrians enter
a crosswalk in different manners, in the presence of vehicular traf-
fic. The indoor training video (1575 frames@15 fps, 1256 x 860
pixels) contains specific events like leaving bags, greeting a person,
taking objects from someone else, sitting down, or kicking a vend-
ing machine.

Two scenes from the same domain were recorded for tests, one
in a traffic scenario and the other one in a cafeteria, see Fig. 8.
These test scenes share similar events than the ones found in the
test sequences, in completely different scenarios. The outdoor
scene contains 1611 frames@15 fps of 720 x 576 pixels, in which
pedestrians, pickable objects, and vehicular traffic interact in a pe-
destrian crossing. The indoor scene contains 2005 frames@15 fps
of 1392 x 1040 pixels, in which people and objects interact among
them and with the elements of a cafeteria, viz. a vending machine,
chairs, and tables. Both sequences show complex events like
abandoned objects, thefts, chases, or vandalism. These sequences
have been automatically analyzed and indexed by the proposed
system.?

The asserted events for every detected target have been stored
in a SQL relational database to enable data retrieval. Every asserted
event points to a temporal interval of validity in the sequence, and
relates the involved target to its contextual blanket. Fig. 9 shows
the results for automatic indexation, in which a collection of anno-
tations for high-level events have been successfully generated for
sequences recorded in outdoor and indoor surveilled scenarios,
respectively. The collection of video annotations describe interac-
tions among the involved entities, and also interactions and
interpretations of complex occurrences.

Examples of content-based video retrieval are presented in Table
5, which retrieve episodes of sequences containing certain events or
entities. More complex queries are possible, e.g. querying for chases
after thefts, objects owned by different persons, or scenes in which a
number of agents were seen at a certain location. As for the NL que-
ries, acceptable propositions also restrict to the domain imposed by

2 The sequences used in these experiments can be found at http://iselab.cvc.uab.es/
tools-and-resources.
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486 - pedestrian (Agent1)

486 - appear (Agent1, upper_left)

492 - walk (Agent1, upper_sidewalk)
583 - turn (Agent1, right, upper_crosswalk)
591 - stop (Agent1, upper_crosswalk)
615 - leave_object (Agent1, Object2)
630 - pedestrian (Agent2)

630 - appear (Agent2, upper_right)
642 - walk (Agentd, upper_sidewalk)
672 - walk (Agent1, upper_sidewalk)
687 - abandoned_object (Object2, upper_crosswalk)
692 - meet (Agent1, Agent2, upper_crosswalk)
799 - enter (Agent2, crosswalk)

806 - vehicle (Agent3)

806 - appear (Agent3, left)

810 - enter (Agent1, crosswalk)

824 - danger_of_runover (Agent3, Agenti)
825 - stop (Agent1)

828 - brake_up (Agent3)

828 - danger_of_runover (Agent3, Agent2)
838 - back_up (Agent2)

842 - stop (Agent2)

852 - accelerate (Agent3)

871 - vehicle (Agentd)

871 - appear (Agentd, left)

872 - exit (Agent3, right)

891 - give_way (Agent4, crosswalk)

896 - walk (Agent2, crosswalk)

916 - walk (Agent1, crosswalk)

939 - accelerate (Agentd)

1000 - stop (Agent2, lower_crosswalk)

1010 - stop (Agent1, lower_crosswalk)

1018 - exit (Agent4, right)

1033 - pedestrian (Agent5)

1033 - appear (Agent5, upper right)

1049 - walk (Agent5, upper sidewalk)

1064 - leave_object (Agent2, Object2, crosswalk)
1078 - turn (Agent5, left, upper_crosswalk)
1093 - enter (crosswalk, Agent5)

1168 - turn (Agent5, right, lower_crosswalk)
1191 - pick_up (Agent5, Object2)

1217 - run (Agent5, road)

1220 - theft (Agent5, object2, Agent2)
1252 - chase (Agent2, Agent5)

1276 - exit (Agent5, upper_left)

1278 - run (Agent2, road)

1294 - exit (Agent2, upper_left)

OUTDOOR ANNOTATIONS

200 - person (Agent1)

200 - appear (Agent1, entrance1)

210 - on_location (Agent1, cafeteria)

271 - on_location (Agent1, vendingMachine)
289 - stop (Agent1)

289 - using_vending_machine (Agent1)
351 - on_location (Agent1, cafeteria)

381 - on_location (Agentt, tables)

425 - sil_down (Agent1, table2)

501 - person (Agent2)

501 - appear (Agent2, entrance2)

514 - on_location (Agent2, cafeteria)

537 - on_location (Agent2, tables)

581 - sit_down (Agent2, table2)

602 - object (Object1)

602 - leave_object (Agent2, Object1)

716 - person (Agent3)

716 - appear (Agenl3, entrance1)

782 - on_location (Agent3, tables)

882 - sit_down (Agent3, table2)

1073 - stand_up (Agent2, table2)

1107 - on_location (Agent2, vendingMachine)
1115 - kick (Agent2, vendingMachine)
1221 - on_location (Agent2, cafeteria)

1237 - exit (Agent2, entrance1)

1237 - abandoned_object (Object1, Agent2)
1395 - stand_up (Agent1, table2)

1424 - stand_up (Agent3, table2

1445 - on_location (Agent3, cafeteria)

1458 - object (Object2)

1469 - on_location (Agent1, cafeteria)

1487 - exit (Agent3, entrance2)

1501 - exit (Agent1, entrance2)

1501 - abandoned_object (Object2, Agent1)
1639 - person (Agentd)

1639 - appear (Agentd, entrance1)

1642 - on_location (Agentd, cafeteria)

1727 - pick_up (Agent4, Object1)

1803 - exit (Agent4, entrance)

INDOOR ANNOTATIONS

Fig. 9. The facts produced by the system (left) when processing the indoor and outdoor scenes (right) account for the main events and behaviors pointed out by end-users in

other scenes of the domain.

the ontology. This way, users are enabled to ask for any modeled
event involving any of the entities, which is related to any semantic
zone in the scenario, and happens at any point or interval of time.
These are some examples of the most repeated types of user queries
that have been accepted by the NL module:

e Show me pedestrians meeting between frames 300 and 1200.

e How many people has picked up bags?

e Have you seen any pedestrian running by the road after a theft?
e List all vehicles before frame 600.



4078 C. Ferndndez et al./ Expert Systems with Applications 38 (2011) 4068-4079
Table 5
Examples of retrieval of episodic events when querying for a given entity.
Interval Event Arguments
Entity ID: Agent5 1186-1202 pick_up is_agent (Agent5)
Interval: 1200-1250 has_object_interaction_with (Object2)
Sequence: Outdoor-1 1186-1276 carry_object is_agent (Agent5)
has_object_interaction_with (Object2)
1211-1219 run is_agent (Agent5)
has_location_interaction_with (Road)
1220-1240 theft is_agent (Agent5)
has_patient_interaction_with (Agent1)
has_object_interaction_with (Object2)
has_property (Malicious)
1241-1275 chase is_agent (Agent1)
has_patient_interaction (Agent5)
Entity ID: Object1 501-601 carry_object is_agent (Agent2)
Interval: 550-1250 has_object_interaction (Object1)
Sequence: Indoor-2 602-1236 leave_object is_agent (Agent2)
has_object_interaction (Object1)
has_location_interaction (Hall)
1237-1712 abandoned_object is_patient (Agent2)

has_object_interaction (Object1)
has_property (Malicious)

m Events agreed by % population m Events recognized

# Outdoor events

# Indoor events

Population share

Outdoor indexing Indoor indexing

Share  Detected/Agreed | Share Detected/Agreed
3% 26/50 (52%) | 8% 18/29 (62%)
10% 24/33 (73%) | 11% 15/21 (71%)
20% 19/25 (76%) | 25% 14/18 (78%)
33% 17/21 (81%) | 31% 13/17 (76%)
10% 15/17 (88%) | 42% 11/15 (73%)
50% 12/12 (100%) | 50% 12/13 (85%)
60% 10/10 (100%) | 61% 9/11 (82%)
70% 8/8 (100%) | 69% 8/10 (80%)
80% 7/7 (100%) | 80% 7/9 (78%)
90% 3/3 (100%) | 92% 4/5 (80%)
100% 2/2 (100%) | 100% 1/1 (100%)

Fig. 10. Correctly indexed events. Left graphic: horizontal axis shows the percentage of people agreeing with a set of events; vertical axis reports the total of events in this set,

and the number out from them that were recognized. Right table: numeric details.

Similar concepts are automatically linked using the metrics
over WordNet, such as pedestrians—people. In the experiments, sub-
jects usually restricted to simpler queries. The difficult queries
were usually too generic or stepped out of the domain, with sen-
tences such as “How is this person dressing?” or “Does it rain?”, in
which case the concepts found could not be linked to the factual
database. Out of the total number of queries asked that belonged
to the domain, a 91% of them led to proper understanding by the
system. Most of the non-understood questions were those starting
with why or how, types that usually result less objective to answer.

These results have been compared to the validation data set
provided by the second group of subjects. Fig. 10 shows the num-
ber of events agreed by a certain percentage of the population, and
the events out of that set correctly identified by the system. Fig. 11
presents the percentage of events correctly recognized. As we can
see, for sets of events agreed by above 50% of the population, the
system recognizes all of them in the outdoor scenario and 85% of
them in the indoor one. On the other hand, if we consider the set
of events identified by more than 90% of the subjects, a recognition
rate of more than 90% is achieved in both scenarios. The reason of
the different performance between indoor and outdoor scenes is
that although indoor image sequences permit a reduced viewpoint
and incorporate less events, the events detected show a higher
semantics, such as body gestures, facial expressions, and subtler

interactions between agents, which require more knowledge than
that one obtained solely from trajectory data.

Some examples of non-recognized annotations are ignore_ob-
ject, be_upset, be_hesitant, talk, realize_about_someone, or shake_-
hands, among others, which mostly happened in indoor
sequences. All undetected events were shared by less than 20% of
the population, given the subjectivity of the interpretation, except
for talk and shake_hands. In these two cases, the semantic frame-
work facilitates retrieving non-modeled events by searching for
similar concepts, e.g. meet or interact.

7. Conclusions and future work

State-of-the-art on surveillance video analysis is heading to the
automatic exploitation of semantic context, in order to extract
event patterns that permit us a better comprehension of image se-
quences. Nevertheless, few works assess the suitability and cover-
age of the selection of semantic events to model, and most of them
are restricted to very specific scenarios, thus questioning the gen-
eralization capability of the methods used. In addition, these
events should also be suited for end-user interfacing of video con-
tents, something difficult to achieve by using bottom-up
procedures.
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Fig. 11. Percentage of retrieval. Failures in indoor sequences are mainly due to
unhandled recognition of expressions and gestures by the vision algorithms.
Highlighted minima correspond to be_upset, shake_hands, and talk (left to right).

Our methodology contributes to these three challenges. First, it
copes with the ambiguous and sometimes incorrect interpretations
done by experts while building conceptual models. The ontology
and the rest of the knowledge bases are modeled in a top-down
manner from users’ textual evidence, constituting a separate iden-
tifiable part of the design. The technique chooses the most suited
event concepts from different scenarios, merging them into single
models (ontology,SGT), and thus enabling generalization to differ-
ent scenarios in the surveillance domain. And finally, since the
ontology has been built from linguistic corpora, it provides
straightforward connection to NL interfaces like those shown for
video description and retrieval, allowing end-users to access mean-
ingful video content flexibly by means of NL descriptions and dia-
logue-based instructions.

The resulting models can be independently maintained and in-
creased, for being part of an expert system. Furthermore, this mod-
ular framework allows multimodality, as long as any new
information from additional modules comes in form of atomic
facts; in that case, it is easily integrated into the situation analysis.

Next steps will test the proposed framework to the challenging
domain of movie and media analysis. To this end, current behav-
ioral models will be enhanced by implementing a module for effec-
tive facial expression recognition, thus enabling the detection of
most of the behaviors that could not be recognized in the low res-
olution surveillance videos. To consolidate the approach, steps will
be taken toward (i) automatically learning the semantic context
from visual features and (ii) holding multiple hypotheses as prob-
able interpretations through the SGT traversal.
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