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The fields of segmentation, tracking and behavior analysis demand for challenging video resources to test, in
a scalable manner, complex scenarios like crowded environments or scenes with high semantics. Neverthe-
less, existing public databases cannot scale the presence of appearing agents, which would be useful to study
long-term occlusions and crowds. Moreover, creating these resources is expensive and often too particular-
ized to specific needs. We propose an augmented reality framework to increase the complexity of image
sequences in terms of occlusions and crowds, in a scalable and controllable manner. Existing datasets can
be increased with augmented sequences containing virtual agents. Such sequences are automatically anno-
tated, thus facilitating evaluation in terms of segmentation, tracking, and behavior recognition. In order to
easily specify the desired contents, we propose a natural language interface to convert input sentences into
virtual agent behaviors. Experimental tests and validation in indoor, street, and soccer environments are
provided to show the feasibility of the proposed approach in terms of robustness, scalability, and semantics.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Evaluating human activities in image sequences is commonly
required by applications seeking to recognize and understand vi-
deo events, such as surveillance, automatic retrieval of video con-
tent, and advanced human–computer interfaces. Specifically, it is
desirable to account for occurrences observed in localized areas
of interest, and to a feasible extent, identify arbitrarily complex
behaviors. Such a high-level evaluation requires prior steps of seg-
mentation and tracking, which have been intensively researched
during the last years. Given the great number of available alterna-
tives, there exists an increasing need to compare and evaluate per-
formance on such systems.

The field of tracking evaluation assesses the capability of track-
ers to estimate the location of moving agents over time in image
sequences, under different environmental conditions. A consider-
ably large number of datasets have been published to provide
researchers with standardized sequences, in order to evaluate
and compare tracking approaches. Some datasets for the field of
event/activity recognition include the CLEAR dataset (Stiefelhagen
et al., 2006), the ViSOR project (Vezzani and Cucchiara, 2008),
the BEHAVE interactions test case scenarios,1 the CAVIAR test case
ll rights reserved.
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scenarios,2 the HumanEva dataset,3 or the VS-PETS benchmark
data. 4

Nevertheless, since the construction of datasets is invariably
sequence-oriented, these repositories often aim to solve specific
difficulties in fixed contexts, sometimes resulting on an overadap-
tation of trackers to the scenes. Thus, it becomes difficult to com-
pare two different image sequences in terms of tracking
complexity. Moreover, new recordings, even from the same sce-
nario, are exposed to different conditions due to changes of illumi-
nation, weather, or configuration of the scenario. To avoid the
effort-consuming and not fully controllable task of acquiring new
sequences for tracking evaluation, we propose instead to incorpo-
rate virtual agents and objects to already recorded scenes, which
allow us to scale at will the complexity of a scene – e.g., occlusions,
crowds, splitting/merging –.

This paper contributes with a tool that increases the complexity
of image sequences in terms of occlusions and crowds, in an scal-
able and controllable manner. To avoid having to deal with com-
puter graphics techniques, a natural language interface allows
testers to easily incorporate virtual agents to the recorded scenes
and control their developments from high-level. This will require
(i) having the occlusions automatically handled by a scene compo-
sition task; (ii) having virtual agents develop their instructed activ-
2 http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
3 http://vision.cs.brown.edu/humaneva/index.html
4 http://www.cvg.rdg.ac.uk/PETS2006/data.html
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Fig. 1. Modular diagram of the components involved in the presented framework.
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ities while reacting to events in the original recording; and (iii)
having precise ground truth available to evaluate segmentation
and tracking processes, i.e., the silhouettes, trajectories, and high-
level behaviors of the synthetic agents.

Considering the features listed above, the proposed system ex-
tends and enhances the architecture described in Fernández et al.
(2008) to facilitate the test and refinement of modules devoted
to activity analysis from image sequences. Research in this area
can benefit from a unified methodology to test or compare the per-
formance and range of the algorithms in a controllable manner.

The presented system follows the architecture shown in Fig. 1,
which includes three main modules and a series of a priori models.
This framework builds upon the fields of computer vision, knowl-
edge representation, computational linguistics, and computer
graphics; similar inter-field collaborations are reviewed in Section
2. Section 3 discusses the representation of spatiotemporal knowl-
edge undertaken by the system by means of an ontology. After
that, Sections 4 and 5 present the tasks for interpretation and
annotation of behavior and virtual agent modeling for scene aug-
mentation, respectively. Section 6 shows experimental results
and evaluation with augmented scenes in indoor, street, and sports
environments, validated in terms of segmentation, tracking, and
event recognition. Finally, Section 7 draws the concluding remarks.
Since the natural language understanding task is not directly
linked to the aim of the paper, a brief description of this module
is included as an appendix at the end of the document.
2. Related work

Our framework aims at augmenting sequences with synthetic
data, by accomplishing several tasks: implementation of ontologi-
cal schemes, recognition of human activity and interactions in im-
age sequences, interpretation of whole scene situations, and
generation of linguistic descriptions. Regarding the main goal, sim-
ilar techniques use synthetic data towards scene augmentation
(Black et al., 2003; Qureshi and Terzopoulos, 2005; Taylor et al.,
2007). Nevertheless, although these approaches permit users to
scale the scene in terms of number of simultaneous tracks, and
evaluate tracking and fixation capabilities, they do not consider
adding complex behaviors for the virtual agents, and do not evalu-
ate the performance at a scene interpretation level. We especially
aim at this level of evaluation.

Ontology schemes have also been used in the literature for the
representation of video events, for example (Francois et al., 2005;
Ma and Mc Kevitt, 2004). The ontology proposed in this paper pre-
sents novelty in the distribution of video events, ranging from met-
ric-temporal events – i.e., basic events with no complexity, and
simply linked to movement or pose recognition – to events involv-
ing multiple agents/objects and requiring complex interpretations.
As shown, this structure distributes adequately the knowledge
processing to different modules and makes the annotation task
easier.
Identifying human activities in image sequences requires to
build proper behavior models that can be easily associated to obser-
vations obtained from tracking systems. A large variety of such
approaches exist in the literature. On the one hand, several
approaches use probabilistic models to generate behavior patterns.
Hidden Markov Models (Brand and Kettnaker, 2000) and several
variants (Galata et al., 2001; Oliver et al., 2000) have been studied
in the last years, showing reasonable performance in selected envi-
ronments. In (Buxton, 2003), Buxton reviews progress in generative
models for advanced Cognitive Vision Systems (CVS) to explain
activities in dynamic scenes, observing applications such as educa-
tion, smart rooms, and also surveillance systems. Kojima et al. re-
port some approaches based on concept hierarchies of actions to
recognize interesting elements and developments in a scene, par-
ticularly people and object interactions (Kojima et al., 2002).

The study of interactions among moving objects is faced using
statistical approaches for high-level attention and control. Most ap-
proaches do not emphasize the contextual properties of analyzed
behaviors; instead, we define an independent stage to analyze the
evolution of situations and their contextualization. Another model-
ing paradigm tries to automatically learn behavior models based on
properties of specific regions of the scenario (Piciarelli and Foresti,
2006; Mokhber et al., 2007; Qian et al., in press). Nevertheless,
learning methods do not address the conceptual ambiguity be-
tween the image sequence and its possible interpretations.

Scene interpretation is traditionally achieved by top-down
methods, which make use of prior semantic knowledge to construct
the behavior models. However, such methods usually depend on
the scenario and on the expertise of the human designer. A behavior
recognition framework is proposed by Brémond et al. (2006): for
each tracked actor, the behavior recognition module performs three
levels of reasoning, viz states, events, and scenarios. An early con-
ception of artificial CVS was introduced by Nagel (1988), who has
actively investigated for decades the field of CVS and Image Se-
quence Evaluation applied to vehicular traffic surveillance (Nagel,
2004). He tackles the high-level analysis of visual occurrences using
fuzzy logic inference engines, and derives the results to the gener-
ation of NL textual descriptions. Recently, Gonzàlez applied this
architecture to enlarge the domain of a CVS towards the analysis
of general human behaviors in image sequences, in what has been
called Human Sequence Evaluation (HSE) (Gonzàlez et al., 2009).
Our proposed system builds upon the HSE scheme, where informa-
tion flows between the lowest levels, image acquisition and seg-
mentation, and the highest ones, NL interactions with end-users.

Several contributions also propose NL interfaces to affect the
behavior of virtual agents, to let humans interact with smart
environments, or to create augmented reality scenes. For example,
(Bindiganavale et al., 2000) introduces an architecture to allow
external users to input immediate or persistent instructions using
natural language, and see the agents’ resulting behavioral changes
in the graphical output of the simulation. (Nijholt et al., 2009)
discusses the modeling and simulation of interacting participants
in virtual meeting rooms and smart home environments, using
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multi-modal capturing techniques that include verbal instructions.
(Irawati et al., 2006) describes an Augmented Reality (AR) multi-
modal interface that allows users to arrange virtual furniture in a
virtual room, using a combination of speech and gestures from a
real paddle.

Douze and Charvillat (2006) have recently joined computer vi-
sion techniques with AR, where moving targets are tracked from
image sequences and merged into other real or virtual environ-
ments. Nevertheless, the method does not consider the animation
of behavioral virtual agents in the resulting sequence. Klein and
Murray (2007) adapt SLAM algorithms developed for robotic
exploration into AR: using images from calibrated hand-held cam-
eras, they collect thousands of feature points used to estimate a
dominant ground-plane. This information permits them to add
behavioral virtual objects over the ground-plane. The method
keeps a correct estimation of the ground-plane as the camera
moves, thereby maintaining a consistent existence of virtual ob-
jects in the image sequence.

Next section starts the description of our framework, by detail-
ing the organization of the semantic knowledge involved.
3. Spatiotemporal and semantic knowledge

When structuring the semantic concepts required for the inter-
pretation of occurrences, we use event concepts as central ele-
ments from which to build the rest of the knowledge resources.
These events are organized linearly, ranging from basic actions
identified by vision processes – e.g., an agent appears, moves fast,
sits down –, to uncertain, intentional knowledge based on high-le-
vel behaviors – e.g., a group of people talks friendly; a soccer player
scores after receiving the ball –. The set of events is organized as
the central taxonomy of the ontology in our system; a significative
set of these concepts can be found in Table 1.

Other concepts related to the events, such as the possible types of
agents or objects participating in the occurrences, or the locations
where these are developed, are included into the ontology in addi-
tional taxonomies. We link situations to the rest of the concepts
by means of ontological constraints that restrict the validity of the
situations to the specific domain. For instance, the situation
use_vending_machine requires a person to be at a particular location
(vending_machine), so it is modeled with two constraints: is_agent
Table 1
Sample concepts from the situation/event taxonomy of the ontology.
(pedestrian) and is_at_location (pedestrian, vending_machine). In the
case of a chase, we need at least an agent and a patient: is_agent
(pedestrian), is_patient (pedestrian). These hierarchies of concepts
and their constraints conform the terminological part of the
ontology.

Apart from the concepts, the ontology also stores the instances
of concepts that have been detected in the scene, i.e., information
regarding the world state and the individuals existing on it. Once
the abstract events, constraints, and entities are satisfied for a cer-
tain world state, these concepts are instantiated as event instances,
constraint instances, and entity instances, respectively. For example,
for the theft event instance in Table 2, the constraint instances re-
quired by the ontology are a thief, is_agent (ped2); a victim, is_pa-
tient (ped1); and a stolen item, has_object (obj1). Keeping track of
the instances is mandatory for the NL understanding task, to iden-
tify references to the agents involved in the scene.
4. Interpretation and annotation of behaviors

The intelligent management of situations builds upon an com-
plete and detailed knowledge of particular scenarios, in order to
facilitate complex semantic explanations that are valid in concrete
domains. Inspecting a variety of different discourse domains we
observe a series of characteristics:

1. Temporal discontinuity: The spatiotemporal data observed in
time-variant scenes is valid only during limited intervals of
time.

2. Sensory gap: Estimating quantitative values from observed
image sequences involves uncertainty.

3. Semantic gap: More uncertainty is included from associating
conceptual attributes to geometric quantities, for example
abnormal behavior speed, due to the inherent vagueness of
many terms.

The vision algorithms applied continuously over the recordings
produce an extensive amount of geometric data. A process of
abstraction is performed in order to extract and manage the rele-
vant knowledge derived from the tracking processes, see (Baiget
et al., 2009) for additional information. This knowledge is provided
in form of spatiotemporal predicates expressing uniquely basic



Table 2
Possible instances of entities (left) used in event indexes (right). For a theft to be indexed, ped2, ped1, and obj1 must accomplish a certain semantic context.

Entity Entity instance Event type Event instance

Pedestrian ped2 Spatiotemporal walk (ped2, fast)
Vehicle veh1 ) Interaction appear (ped2, sidewalk)
Location sidewalk Interaction pick_up (ped2, obj1)
Object obj1 Interpretation theft (ped2, ped1, obj1)
Descriptor fast Interpretation danger_of_runover (veh1, ped2)

Fig. 2. Scheme of the interpreter module. This module conceptualizes new motion data, identifies events using a priori models, and carries out a situational analysis.
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spatiotemporal developments. They facilitate a schematic concep-
tual representation of knowledge which is time-indexed and incor-
porates uncertainty.

Hence, in addition to the prior knowledge of the locations, it is
desirable to find a conceptual framework that exploits these addi-
tional particularities of the data. A convenient solution to address
these issues is to represent quantitative knowledge by means of
fuzzy logic predicates. To this end, we use the Fuzzy Metric-
Temporal Logic (FMTL) formalism (Schäfer and Brzoska, 1996),
which consists of a rule-based inference engine in which conven-
tional logic formalisms are extended by a fuzzy and a temporal
Fig. 3. This SGT is evaluated to perform as a virtual commentator for soccer. When a set
components. In terms of notation, FMTL is similar to the well-
known reasoning engine PROLOG (Colmerauer, 1990). However,
the temporal and spatial components of FMTL make it a suitable
tool to represent observed events in image sequences.

Nevertheless, some guidelines are needed to establish more
complex relations of cause, effect, precedence, grouping, interac-
tion, and in general any reasoning performed with time-con-
strained information at multiple levels of analysis. We use the
high-level conceptual predicates defined in the ontology to express
semantic relations among entities, at a higher level than metric-
temporal relations. The tool which has been chosen to enable
of conditions applies, its note reaction predicate generates a semantic annotation.



Fig. 4. (a) Generic human body model represented using a stick figure similar to Cheng and Moura (1999), here composed of twelve limbs and fifteen joints and (b) Different
human models performing dancing and running actions.
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behavior modeling, recognition, and synthesis of such predicates is
the Situation Graph Tree (SGT), see (Nagel, 2004; Gonzàlez et al.,
2009). The SGT is a hierarchical classification tool used to describe
behavioral activity of agents in terms of situations they can be in.
These trees contain a priori knowledge about the admissible se-
quences of occurrences in a defined domain.

The semantic knowledge related to an agent at a given point of
time is contained in a series of situations (Nagel, 1988), the nodes of
the hierarchical graph, see Fig. 3. Each situation evaluates a set
of conditions in form of FMTL predicates, and reacts generating a
new predicate once all the conditions are asserted. This new pred-
icate varies according to the application: for event recognition, it is
a high-level interpretation of the asserted situation, e.g., an agent
crosses the street or steals an object to another agent; for virtual
agent generation, it is a response action, e.g., stop if a car is crossing.

Each modeled situation is distributed along the tree-like struc-
ture of an SGT by means of the particularization, prediction, and self-
prediction edges. Particularization edges instantiate more specific
situations when certain conditions are accomplished. Prediction
edges inform about the following admissible states within a situa-
tion graph from a given state, including the maintenance of the
current state by means of self-prediction edges. The conjunction
of these edges allows experts to define a map of admissible paths
through the set of accepted situations. An example of SGT for basic
commentation of soccer matches is shown in Fig. 3.

SGTs recognize the instantiated situations of an observed agent
by applying a graph traversal. The goal of the traversal is to deter-
mine the most particular situation that can be instantiated by con-
sidering the collection of asserted FMTL predicates at each time
step. These predicates are generated as a fuzzy discretization of
the spatiotemporal data acquired by the tracking systems. The tra-
versal of the SGT is applied by considering the knowledge encoded
in the form of prediction and particularization edges. Fig. 2 depicts
the interaction between the SGT and the fuzzy reasoner; a deeper
explanation is detailed in Arens and Nagel (2003).

The reaction predicates are notes describing the content of the
situations, one per time-step, as a result of the continuous evalua-
tion of the SGT. Persistent notes are finally grouped along the tem-
poral interval in which they have been a constant output. As a
result, the whole sequence is split in cohesive time-intervals de-
fined by the start of each semantic tag. Thus, we obtain sequences
of interpretations (event recognition) and virtual agent reactive
behaviors (scene augmentation) from tracked data.
Fig. 5. p-actions computed in the aRun aSpace (Gonzàlez et al., 2009). By varying the
parameter pose p we move along the manifold, temporally evolving the human
body posture along the prototypical performance of a learnt action.
5. Virtual agent modeling

Predicates are obtained from NLU as explained in Section A. In
essence, they represent goals to be reached by some virtual entity
in the scenario. To accomplish this task, we adapt the FMTL+SGT
framework presented in Section 4 towards the creation of syn-
thetic instances of agent trajectories. As explained before, the
SGT is evaluated given the quantitative information obtained from
tracking at each frame step, which instantiates situations and
raises reactions, like the annotations of observed behavior already
described. Here, on the other hand, these reactions are used to pro-
duce synthetic behaviors. Given an initial configuration of a virtual
agent, the system recursively generates the activities for the agent
within its context.

Generating synthetic trajectories requires adapting prior
knowledge from Table 1, initially designed for behavior recogni-
tion. Thus, each virtual agent behavior is modeled using three dif-
ferent generation processes, according to the level of abstraction:
action (walk, bend), contextualized events (going to vending ma-
chine, accelerating), and behavior (entering a crosswalk).
5.1. Virtual action

A human action is defined as a discrete sequence of movements
of body parts. In this work we use a human model based on the
stick figure, see Fig. 4. The learned sequence of movements for a
particular action is called the prototypical action or p-action, de-
fined as a cubic spline in a PCA space, where each point p 2 [0,1]
corresponds to the mean postures of several performances, see
Fig. 5. Using p-actions, we can model both cyclic actions, e.g. walk
or run, and non-cyclic ones, e.g., wave or bend (Gonzàlez et al.,
2009).



Fig. 6. Scheme of the AR process. When considering the pictured situation scheme, the numbered predicates can be found in the corresponding states of the information flow.
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5.2. Generation of contextual events

Next, in order to adapt its motion online, accomplishable goals
must be specified for an agent in the scenario. Such objectives re-
quire predicates to adapt the agent trajectory, so it is valid in future
time steps. For instance, given an agent with state vector5

sAg
t ¼ ðxt ; yt ;v t ; ot ; at ; ptÞ, the predicate go_to_ location (Ag, Location)

computes the shortest trajectory sAg
tþ1; . . . ; sAg

n

n o
to arrive to Location

and infers its next position (xt+1,yt+1) according to the current speed
value vt.

5.3. Behavior generation

Virtual agent behaviors need to be defined considering the pre-
viously mentioned interactions. Reactions to the situations, used to
annotate observed events, are also employed to modify the agent
status for future frame steps. These generated status predicates
are returned to the SGT as a feedback, and the reasoner considers
them in following evaluations of the SGT.

This recursive procedure is depicted in Fig. 6. The traversal
starts with an initial status of a virtual agent, containing its posi-
tion, orientation, speed, and action at the very first time. Then,
for each time step t, the traversal uses the current agent status
sAg

t to generate the next one sAg
tþ1. In the example in Fig. 6, the situ-

ation instantiated at time t generates the action predicate turn
(agent1, right). This predicate modifies the agent status so that
the agent will be turning to the right in the following time steps.
The computation of sAg

tþ1 is based on sAg
t and the modeled p-action.

The semantic concept right is converted into a numerical value by
combining the current orientation o and speed v, and is used to
generate the new position (x0,y0), speed v0, and orientation o0 for
the next time step. The obtained values are used to construct the
agent status for the time step t + 1 and will be used as input for
time step t + 2 in a subsequent traversal loop. More accurate phys-
ical rules can be elaborated by simply defining them as FMTL
predicates.
5 The state vector incorporates values for ground-plane position, velocity, orien-
tation, type of action, and percentage in the sequence of the action.
Action predicates like turn determine particular movements
and actions for a virtual agent. This is achieved by modifying its po-
sition, velocity, orientation, and action. For example, accelerate
(Agent, Value) modifies the velocity of the agent for the next
time step. The fuzzy concept Value describes the discrete value of
speed that the agent will take in a future time step. Collisions
can be avoided by evaluating the distance between the virtual
agent and the rest of the object via has_distance predicates,
computed over the estimated positions. Agent interactions are
tackled in the same fashion, given that each agent behavior is pro-
vided by a dedicated SGT traversal. Obstacles have to be defined in
the conceptual models provided a priori.
6. Experimental results

The described system has been tested on three different scenar-
ios from indoor, street, and sports scenes, in which original image
sequences have been incremented with virtual agents. We have
validated the approach regarding segmentation, tracking, and
event recognition. In the first case, we compare the performance
of 3 state-of-the-art background substraction techniques when
segmenting original and augmented sequences. We also evaluate
how different tracking algorithms perform at location entrances,
occlusions, and location exits. Finally, we present lists of semantic
annotations for the original and augmented sequences of each sce-
nario, to demonstrate that the creation of virtual agents modifies in
a controlled manner the initial performances of the tracking
algorithms.

Surveillance scenarios represent either open or closed environ-
ments, each type entailing different events of interest: in street and
soccer scenarios, cameras cover wide regions and agents occupy a
narrow part of the image, the analysis thus being focused on their
silhouettes and trajectories. On the other hand, indoor scenarios
typically deal with small environments that contain a richer set
of objects to interact with (chairs, tables, vending machines).
Regarding open scenarios, urban and sport environments also dif-
fer: soccer scenes are more constrained in terms of number of
agents and expected behaviors, which are based on well-known



Fig. 7. Conceptual models for the scenarios used to test behavior interpretation: (a) street, (b) indoor, and (c) soccer.
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rules; urban street scenes contain less prior information, and thus
require a detailed semantic description of the scenario elements to
improve interpretations.

In order to study pedestrian behaviors and vehicle–pedestrian
interactions, we use the HERMES outdoor sequence.6 Secondly, we
focus on the analysis of sport video sequences to obtain descrip-
tions of matches; to this end, a soccer sequence from the VS–PETS
2003 database 7 has been used to evaluate the behavior of soccer
players. The third sequence depicts an indoor cafeteria scenario, in
which we analyze a vandalic indoor behavior. A conceptual model
of the environment has been designed for each application domain,
see Fig. 7. The scenario is represented in ground-plane coordinates,
which allows the reasoning system to work with accurate 3D infor-
mation extracted from calibrated cameras.

6.1. Evaluation of segmentation

Given that the mask of a virtual agent presents a synthetic –
thus perfect – chroma, it requires to undergo a process of noise
generation to present the characteristics of the camera output im-
age. Several works have studied the estimation and generation of
camera noise; here, we follow the noise model of a CCD camera
as described in (Liu et al., 2006):

I ¼ f ðLþ ns þ ncÞ þ nq; ð1Þ

where f is the camera response function, L the irradiance, ns the irra-
diance-dependent (photon) noise, nc the independent noise before
gamma correction, and nq the quantization/amplification noise,
which is usually ignored. Noises have zero mean, Lr2

s variance for
ns, and r2

c variance for nc.
We evaluate segmentation comparing three techniques on

background substraction for shadow detection, Ariel Amato and
Mozerov (2008), Seo et al. (1997), Stauffer and Grimson (2000),
with and without the incremental presence of virtual agents. The
original soccer sequence has been augmented twice, by adding five
virtual agents each time. Estimated average values of Lr2

s and r2
c

6 The indoor and street sequences presented here are part of the dataset recorded
for the HERMES Project (IST 027110, http://www.hermes-project.eu), which are
publicly available at http://iselab.cvc.uab.es/tools-and-resources.

7 http://www.cvg.rdg.ac.uk/PETS2006/data.html
for the original frames have been 0.036 and 0.050, and synthetic
noise has been generated for each pixel in the masks. Fig. 8 shows
silhouette segmentation errors at pixel-level evaluated in terms of
percentage of false positives (FP) and false negatives (FN), over a
random selection of 20 frames taken from the sequence. A new
ground truth has been computed by joining the existing manual
annotations with the ones automatically generated for virtual
agents.

As it can be seen, the addition of virtual agents generally re-
duce the FP rate. This happens because the lack of chromatic
problems in the silhouettes of virtual agents tends to ease the
identification of foreground. The first technique does not reduce
errors as much as the other two when scaling the sequence. On
the other hand, we also observe an increment of the FN rate, gi-
ven the lack of precision of the algorithms to accurately segment
the new silhouettes, caused mainly by occlusions, camouflage,
and clutter.
6.2. Evaluation of tracking

The evaluation of tracking algorithms has been tested incre-
mentally, too. The original HERMES outdoor sequence has been aug-
mented with 30, 60, and 120 virtual agents appearing and
disappearing over the whole timeline. Two different trackers have
been tested: a blob tracker from the OpenCV library,8 which is
well-known to the computer vision community, and a real-time
tracker based on segmentation on a static background (Roth
et al., 2009). The ground truth labeling has been obtained manually
using a touch screen.

Virtual agents were instructed to randomly follow behaviors
like walking by the sidewalk, waiting for someone, or crossing
the street. Fig. 9 compares several frames showing the results of
the two trackers from both the original and the incrementally aug-
mented sequences. We can see that the performance drops as the
crowd increments.

In order to validate the detection of simple tracking events, we
account the detection of simple tracking events compared to man-
ual annotation. The results are depicted in Table 3.
8 http://opencv.willowgarage.com/

http://www.hermes-project.eu
http://iselab.cvc.uab.es/tools-and-resources
http://www.cvg.rdg.ac.uk/PETS2006/data.html
http://opencv.willowgarage.com/


Fig. 8. Silhouette segmentation errors for the original and augmented sequences, in terms of percentage of false positive (FP) and false negative (FN) pixels.

Fig. 9. Top–down: Tracking results of the original sequence, sequence augmented with 30, with 60, and with 120 virtual agents, for (a) the OpenCV blob tracker and (b) the
real-time tracker (Roth et al., 2009).

Table 3
Detection of simple events in the first 17 s of the street sequence, for original (Or.) and augmented versions with 30, 60, and 120 virtual agents.

Events Ground truth Tracker (Roth et al., 2009) Blob tracker

Or. 30 60 120 Or. 30 60 120 Or. 30 60 120

Enter scene 2 10 19 33 2 9 13 15 2 12 15 28
Exit scene 0 0 0 1 1 3 8 10 0 8 8 9
Start occlusion 1 4 10 29 2 6 8 16 1 4 10 27
End occlusion 1 4 9 13 2 5 7 8 1 3 9 23
Enter crosswalk 0 5 10 18 0 5 11 22 0 5 5 10
Exit crosswalk 0 0 0 1 0 1 4 4 0 1 3 3
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We observe that tracking performance decreases as the crowd
of virtual agents is formed, especially for the second tracker, which
is optimized for real-time performance rather than multiple target
tracking. For this tracker, crowded context tends to have bounding
boxes slide away until lost. The blob tracker performs better on
acquiring and holding on targets,

The entering/exiting scene events were successfully recognized.
However, due to camouflage, the number of occlusions detected
is higher than the annotated ground truth. Finally, most of the
events entering/exiting crosswalk have been detected.

6.3. Evaluation of event recognition and annotation

Table 4 show sample frames and annotations from the original
and augmented versions of the HERMES outdoor sequence. In the
original sequence, pedestrians Ag1 and Ag2 stop before entering
the crosswalk and an approaching vehicle (Ag3) does not give
way, thus generating the event danger_of_runover. The textual
description provided by the user has been: ‘‘A new pedestrian ap-
pears by the lower left side at frame 800. The pedestrian enters the
crosswalk. He leaves by the lower right side”. The purpose of this
experiment is to study the capability of a behavior analysis system
to recognize target situations such as runovers. In addition, since
virtual agents are aware of what is happening in the original se-
quence, they can react to previously recognized events. As it can
be observed in the second annotation table, the new virtual agent
Table 4
Semantic annotations obtained for the frame interval [805,875] of the street HERMES seq

Start Event (original sequence) #

806 Appear (Ag3, left) 1
810 Enter (Ag1, crosswalk) 2
824 Danger_of_runover (Ag3, Ag1) 3
825 Stop (Ag1) 4
825 –
828 Brake_up (Ag3) 5
828 Danger_of_runover (Ag3, Ag2) 6
838 Back_up (Ag2) 7
838 –
842 Stop (Ag2) 8
852 Accelerate (Ag3) 9
855 –
871 Appear (Ag4, left) 10
872 Exit (Ag3, right) 11
891 Give_way (Ag4, crosswalk) 12
895 –
898 Walk (Ag2, crosswalk) 13
(Ag4) is correctly tracked, and a new predicate danger_of_runover is
generated at frame 855. After having reacted to the environment,
this agent retakes the demanded behavior.

The second experiment is shown in Table 5. Its purpose is to
demonstrate that an addition of virtual agents may affect the
behavior analysis annotations. Events in the original sequence de-
scribe the normal development of a match: player B_4 passes the
ball during frames 195–284, this is intercepted by A_2 at frame
295. In the augmented sequence, virtual agents have been added
as components of team B to interfere in the activity analysis. Each
virtual agent has been given two instructions: ‘‘A new player ap-
pears in the hzonei at frame 180”, with hzonei being one of
{CD,CM,LD, . . .} as described in Fig. 7(c), and ‘‘He chases after the
ball”. In the new sequence, virtual agent B_7 runs towards B_4 at
frame 195. At frame 284, B_7 seems to have captured the ball, so
the system interprets a correct pass between team B members:
passed_the_ball (B_4, B_7). However, the virtual agent does not
own the ball – the trajectory of an original element of the sequence
cannot be affected –. A_2 finally takes the ball, and the system
interprets that the virtual agent lost it, asserting lost_the_ball (B_7).

The list of events in the HERMES indoor scenario describe
interactions among agents, objects, and locations, and also inter-
pretations of complex behaviors and occurrences. In the original
scene, three persons and two objects are shown interrelating
among them and with elements of a cafeteria such as a vending
machine, chairs, and tables. The instantiated events include agents
uence, for the original and augmented sequences.

Event (augmented sequence) #

Appear (Ag3, left) 1
Enter (Ag1, crosswalk) 2
Danger_of_runover (Ag3, Ag1) 3
Stop (Ag1) 4
Enter (Ag3, crosswalk) 5
Brake_up (Ag3) 6
Danger_of_runover (Ag3, Ag2) 7
Back_up (Ag2) 8
Stop (Ag3) 9
Stop (Ag2) 10
Accelerate (Ag3) 11
Danger_of_runover (Ag4, Ag3) 12
Appear (Ag4, left) 13
Exit (Ag3, right) 14
Give_way (Ag4, crosswalk) 15
Walk (Ag3, crosswalk) 16
Walk (Ag2, crosswalk) 17



Table 5
Semantic annotations obtained for the frame interval [187,465] of the VS–PETS image sequence and its augmented scene.

Start Event (original sequence) # Event (augmented sequence) #

187 Player_carries_ball_defense (B_4) 1 Player_carries_ball_defense (B_4) 1
279 Threw_the_ball (B_4) 2 Threw_the_ball (B_4) 2
284 – Passed_ball (B_4, B_7) 3
296 Lost_the_ball (B_4) 3 Lost_the_ball (B_7) 4
296 Player_carries_ball_defense (A_2) 4 Player_carries_ball_defense (A_2) 5

Table 6
Sequence of semantic annotations obtained for the frame interval [700, 900] of the indoor HERMES sequence.

Start Event (original sequence) # Event (augmented sequence) #

702 – On_location (Ag3, vending_machine) 1
714 – Vandalize_vending_machine (Ag3) 2
716 Appear (Ag3, entrance1) 1 Appear (Ag4, entrance1) 3
742 – Use_vending_machine (Ag3) 4
755 On_location (Ag3, cafeteria) 2 On_location (Ag4, cafeteria) 5
782 On_location (Ag3, table2) 3 On_location (Ag4, table2) 6
882 Meet (Ag3, Ag1) 4 Meet (Ag4, Ag1) 8
890 – Exit (Ag3, entrance2) 9
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appearing and leaving, displacements among the different scenario
regions, sit down and stand up actions, normal interaction with a
vending machine, and violent behaviors such as kicking or punch-
ing the vending machine.

In this third and last experiment, shown in Table 6, a virtual
agent interacts with the elements of the scenario while partially
occluding the real agents in the scene. This example takes
advantage of a closer position of the camera to provide more de-
tailed sequences of actions, so that specific combinations of ges-
tures can be detected by activity analysis systems due to the
increased resolution of the agents. The input text in this case
has been ‘‘A new person enters by the first entrance at frame
650. He pushes the vending machine. He takes a drink from it. He
leaves by the second entrance”. In the augmented sequence,
particular behaviors like vandalize_vending_machine (Ag3) at
frame 714 or use_vending_machine (Ag3) at frame 742 can be
correctly detected by the system by means of pose estimation
algorithms.



Fig. A.10. Scheme of the NLU module. Sentences written by the user are individually converted into conceptual predicates that will generate the augmented sequences.

Fig. A.11. A test sentence is compared to a collection of pattern trees, each one associated to a generic predicate. The predicate of that pattern with a lowest TED specializes its
predicate with information from the sentence.
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7. Conclusions

We have presented a framework that may benefit research in
the fields of segmentation, tracking, and behavior analysis. The sys-
tem presented here can add virtual agents to available recordings
using the presented framework, in order to evaluate the limitations
of segmentation, tracking, and behavior understanding processes
in terms of agent scalability, occlusion handling, and agent interac-
tion. Users do not require expertise in computer graphics, given
that the behavior of the virtual agents is controlled by NL sen-
tences. Experimental tests and validation in indoor, street, and
sports environments have showed the feasibility of the proposed
approach.

The system semantically indexes the observed events. The tax-
onomy of events provides the space and validity of possible anno-
tations for video sequences of a domain. The SGT acts as a content
classifier, which semantically characterizes the temporal structure
of video sequences. Thus, the resulting predicates can be identified
as high-level semantic indexes, which facilitate further applica-
tions such as search engines and query-based retrieval of content.
This scheme has been applied to video-surveillance. Future work
will be devoted to reduce the amount of prior knowledge that
needs to be specified to a given scenario. The automatic extraction
of conceptual knowledge related to the scenario constitutes an
interesting line of research nowadays, and would relax the require-
ments to apply the proposed system into new scenarios.
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Appendix A. Linguistic user interaction

This contribution incorporates a Natural Language Understand-
ing (NLU) module that enables end-users to augment video
sequences with virtual actors, in order to obtain complex aug-
mented scenes.

NLU is typically considered a process of hypothesis manage-
ment, in which given a textual NL input, the most appropriate
interpretation out of a set of possibilities has to be chosen. In our
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case, the ontology of Table 1 specifies the domain of validity under-
taken by the universe of possible user queries, and reduces them to
a handleable space of situations.

The general operations conducted by the NLU module are
shown in Fig. A.10. First, each sentence of the user is processed
by a stemming algorithm based on parsing rules, and its contents
are linked to concepts from the global ontology.9 After that, the
specific context of the sentence is found by relating the required
referring expressions to entity instances, e.g., ‘‘this agent”, ‘‘the sec-
ond person”, and ‘‘last pedestrian” are expressions that refer to spe-
cific agents. Lastly, the interpreted sentence is analyzed at a
syntactic/semantic level, and its contents are assigned to the most
suitable action predicate in order to generate virtual agents in the
scene. Further information about these processes is detailed in
Fernández (2010).

By linking each lemma to an ontological concept, we reduce the
amount of interpretations of an input sentence to those admissible.
However, it is possible that more than one word is directed to the
same concept, e.g., pedestrian/person/walker?Pedestrian. In order
to enhance the recognition of words, and to avoid extra scaling the
coverage of the linguistic models, further lexical disambiguation is
accomplished relying on the WordNet lexical database (Fellbaum,
1998). Lists of closely related words are retrieved using semantic
metrics based on relationships such as synonymy and hypernymy.
New candidates are evaluated to determine the ontological nature
of an unknown word; as a result, the word is linked to a number of
domain concepts that can explain it.

On the other hand, the assignment of linguistic content to an ac-
tion predicate is achieved by (i) parsing the sentence into a depen-
dency tree, and (ii) measuring its distance to a series of pattern
trees, each one associated to a predicate from the ontology. This
is done by a Tree Edit Distance (TED) algorithm (Bille, 2005) con-
strained by the ontology: the concepts at the leaves of the trees
are aligned to each other and compared, and their disagreement
is penalized. Penalties are high for absences, null for particulariza-
tions, and for generalizations they depend on the levels of differ-
ence in the hierarchy of concepts. Fig. A.11 depicts an example in
which the concept Car augments the distance with pattern tree 2
having Pedestrian at the corresponding leaf, but specializes the
general concept Vehicle at the same position in patterns 1 and 3
with distance zero. The pattern tree with lowest distance to the
test tree is considered the best interpretation, and the fields of
its associated predicate are particularized with specific informa-
tion from the sentence.
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